
Math 140 Exam #3 Key (Summer 2014)

1 Suppose that f is a continuous function such that f(−3) = 11 and f(9) = −5. Now, if f is
differentiable on (−3, 9), then by the Mean Value Theorem there exists some c ∈ (−3, 9) such
that

f ′(c) =
f(9)− f(−3)

9− (−3)
=
−5− 11

12
= −4

3
< −1.

That is, if f is differentiable on (−3, 9) then it is not possible to have f ′(x) ≥ −1 for all
x ∈ (−3, 9). There can exist no function f of the kind proposed in the problem.

2 Let f(x) = 3x − 1 − 2 cosx, so f is everywhere continuous and differentiable. Since
f(0) = −3 < 0 and f(2π) = 6π − 3 > 0, by the Intermediate Value Theorem there exists some
c ∈ (0, 2π) such that f(c) = 0, and thus 3c− 1− 2 cos c = 0. We now have established that the
equation 3x− 1− 2 cosx = 0 has at least one real root.

Suppose that the equation has two real roots a and b, where a < b. Then f(a) = f(b) = 0,
and so by Rolle’s Theorem there exists some c ∈ (a, b) such that f ′(c) = 0. Since f ′(x) =
3 + 2 sinx this means that 3 + 2 sin c = 0, which implies that

sin c = −3
2

—impossible for any real number c! To avoid such a contradiction we must conclude that the
equation 3x− 1− 2 cosx = 0 cannot have more than one real root, and therefore it must have
exactly one real root.

3 Since p′(t) = 1
2
t−1/2, we have

p(t) = t1/2 + c =
√
t+ c

for some constant c. Now, p(4) = 6 implies that 6 =
√

4 + c, and thus c = 4. Therefore

p(t) =
√
t+ 4.

4a Use the Power Rule:∫ (
x3/4 + x5/2

)
dx =

4

7
x7/4 +

2

7
x7/2 + c =

4

7

4
√
x7 +

2

7

√
x7 + c

=
4

7
x

4
√
x3 +

2

7
x3
√
x+ c.

(Note that the original indefinite integral only makes sense for x > 0.)

4b We have ∫
sec(5y) tan(5y)dy =

1

5
sec(5y) + c.

4c Let u = 4− 9x2, so by the formal mechanism of “u-substitution” we get

du = −18x dx ⇒ − 1

18
du = xdx,



2

and so∫
x√

4− 9x2
dx = − 1

18

∫
1√
u
du = − 1

18

∫
u−1/2du = − 1

18
· 2u1/2 = −1

9

√
4− 9x2 + C.

5 We can partition [1, 5] into n subintervals each of length ∆x = 5−1
n

= 4
n
, and evaluate

f(x) = 4x− 3 at the right endpoint of each subinterval so that x∗i = 1 + 4
n
i. By definition,∫ 5

1

f(x) dx = lim
n→∞

n∑
i=1

f(x∗i )∆xi = lim
n→∞

n∑
i=1

[
4

(
1 +

4

n
i

)
− 3

]
· 4

n

= lim
n→∞

4

n

n∑
i=1

(
1 +

16

n
i

)
= lim

n→∞

4

n

(
n+

16

n

n∑
i=1

i

)

= lim
n→∞

4

n

(
n+

16

n
· n(n+ 1)

2

)
= lim

n→∞

(
36 +

32

n

)
= 36.

6a
∫ 2

6
7f = −7

∫ 6

2
f = −7(−4) = 28

6b
∫ 6

2
(f − 3g) =

∫ 6

2
f − 3

∫ 6

2
g = −4− 3(7) = −25

6c We have∫ 5

2

9g = 9

∫ 5

2

g = 9

(∫ 6

2

g −
∫ 6

5

g

)
= 9(7− 20) = 9(−13) = −117.

7 By the Fundamental Theorem of Calculus, and also the Chain Rule, we have

Φ′(x) = tan2 x cos9(6− tanx) · (tanx)′ = tan2 x sec2 x cos9(6− tanx)

8a We have∫ 9

1

3x6 − 2
√
x

x2
dx =

∫ 9

1

(3t4 − 2x−3/2)dt =

[
3

5
x5 +

4√
x

]9
1

=
531, 392

15
= 35, 426 2

15
.

8b Let u = cos θ, so du = − sin θ dθ. When x = 0 we get u = 1 also; and when x = π/4 we
get u = 1/

√
2. Thus we obtain∫ π/4

0

cos2 θ sin θ dθ = −
∫ 1/

√
2

1

u2 du = −1

3

[
u3
]1/√2
1

= −1

3

[(
1√
2

)3

− 1

]
=

1

3

(
1− 1

2
√

2

)
.
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9 First we find the points where the curves generated by f(x) = x − 1 and g(x) = (x − 1)3

intersect:

f(x) = g(x) ⇒ x− 1 = (x− 1)3 ⇒ (x− 1)3 − (x− 1) = 0

⇒ x(x− 1)(x− 2) = 0 ⇒ x = 0, 1, 2.

so the points are (0, f(0)) = (0,−1), (1, f(1)) = (1, 0) and (2, f(2)) = (2, 1). The point (0,−1)
is in the fourth quadrant and so can be discarded. The region R enclosed by f and g between
x = 1 and x = 2 is easily verified to lie in the first quadrant, with f(x) ≥ g(x) for 1 ≤ x ≤ 2
in particular. Thus

A(R) =

∫ 2

1

[f(x)− g(x)] dx =

∫ 2

1

[(x− 1)− (x− 1)3] dx

=

∫ 2

1

(−x3 + 3x2 − 2x) dx =

[
−1

4
x4 + x3 − x2

]2
1

=
1

4
.

See the figure below.
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10 For each x ∈ [0, 5] we find that the cross-sectional area is

A(x) =
(

2
√

25− x2
)2

= 4(25− x2),

and thus the volume of the solid is

V =

∫ 5

0

A(x)dx = 4

∫ 5

0

(25− x2)dx = 4

[
25x− x3

3

]5
0

= 4

[
25(5)− 53

3

]
=

1000

3
.

11 The volume is

V =

∫ 1/2

0

π

(
1

4
√

1− x

)2

dx = π

∫ 1/2

0

(1− x)−1/2dx = π
[
−2(1− x)1/2

]1/2
0

=
(
2−
√

2
)
π.


