MATH 140 ExaM #1 KEY (SUMMER 2014)
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2a (r* — 7r +4)%? is a composition of a polynomial function with a radical function, and 3
is in its domain. Therefore, by direct substitution,

lim(r* — 7r +4)7° = [(3)" = 7(3) +4]*/* = (V64 )" = 4* = 16.
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2b Combine the fractions for best results:
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2c  Multiply by conjugate of the numerator:
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3 Let

f(zr) =2 —5z —2cosz and h(z) =sinz — 2.
Since lim, ,o+ f(z) = —2 and lim, ,o+ h(x) = —2, by the Squeeze Theorem it follows that
lim, o+ g(z) = —2 also.

4 Recall that in general V22 = |z|. Now, when x — oo we have z > 0, so then Va2 = = and
we obtain
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On the other hand x — —oo implies z < 0, so then vV2? = —x and we obtain
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Hence the horizontal asymptotes of f are y = % and y = —4.

5 The function f is continuous at 4 if and only if lim, 4 f(z) = f(4) = 13; but
lim f(z) = lim(2? —5) = 4> - 5 =11 # 13 = f(4),
T—4 x4

and therefore f is not continuous at 4.

6 Continuity from the left at 1 requires that lim, ,;- g(x) = g(1). Since
lim g(z) = lim (z*+2)=1>+1=2
z—1- rz—1—

and ¢g(1) = a, we set a = 2 to secure continuity from the left at 1.
Continuity from the right at 1 requires that lim, ,;+ g(z) = ¢g(1). Since

m (32 +5)=3(1) +5=8

li = 1
Jim g(w) = Tim,

and ¢g(1) = a, we set a = 8 to secure continuity from the right at 1.
We see that there can be no value for a that results in continuity from the left and right at
1 simultaneously, which means there is no a value which will make ¢g continuous at 1.

7a By the definition of derivative:
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and so we have

7b From Problem 7a, the slope of tangent line is f/(1) = 3/4. Since the line contains the
point (1,2), we have
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or simply

8a By the Product Rule,
f'(z) = (202% + 62) (2 + 7) + (52 + 32 + 1)(32?).

8b By the Quotient Rule,

J(t) = P+ — @ —1)(2t) 4t

(t2 + 1)2 (t2 + 1)2'

8c Product Rule again:

y = (sinx)(sec’ v) + (cosx)(tanx) = sec x tan x + sin x.

8d Quotient Rule again:
,  (I+sinz)(2cosx)’ — (2cosz)(1 +sinx)’ (1 +sinz)(—2sinz) — (2cosx)(cos x)

(1 +sinz)? B (1+sinz)?
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or simply
, 2

y= S sinz 4+ 1

9a Velocity function: v(t) = §'(t) = 6t* — 42t. Setting v(t) = 0 gives
6t —42t =0 = 6t(t—-7) =0 = t=0,7.

However ¢t = 7 is outside the designated domain [0, 6], so the object is at rest only at time ¢ = 0.

9b Acceleration function: a(t) = v'(t) = s”"(t) = 12t — 42. Setting a(t) = 0 gives t = 7/2, the
time when the acceleration is zero. Also a(t) < 0 for t € [0,7/2) and a(t) > 0 for t € (7/2,6].



