Math 140 Exam \#2 Key (Summer 2013)

1a By the Product Rule,

$$
f^{\prime}(x)=\left(20 x^{3}+6 x\right)\left(x^{3}+7\right)+\left(5 x^{4}+3 x^{2}+1\right)\left(3 x^{2}\right) .
$$

1b By the Quotient Rule,

$$
g^{\prime}(t)=\frac{\left(t^{2}+1\right)(2 t)-\left(t^{2}-1\right)(2 t)}{\left(t^{2}+1\right)^{2}}=\frac{4 t}{\left(t^{2}+1\right)^{2}}
$$

1c Product Rule again:

$$
y^{\prime}=(\sin x)(-\sin x)+(\cos x)(\cos x)=\cos ^{2} x-\sin ^{2} x .
$$

1d Quotient Rule again:

$$
y^{\prime}=\frac{(1+\sin x)(2 \cos x)^{\prime}-(2 \cos x)(1+\sin x)^{\prime}}{(1+\sin x)^{2}}=\frac{(1+\sin x)(-2 \sin x)-(2 \cos x)(\cos x)}{(1+\sin x)^{2}}
$$

or simply

$$
y^{\prime}=-\frac{2}{\sin x+1} .
$$

2a Velocity function: $v(t)=s^{\prime}(t)=6 t^{2}-42 t$. Setting $v(t)=0$ gives

$$
6 t^{2}-42 t=0 \Rightarrow 6 t(t-7)=0 \Rightarrow t=0,7
$$

However $t=7$ is outside the designated domain $[0,6]$, so the object is at rest only at time $t=0$.

2b Acceleration function: $a(t)=v^{\prime}(t)=s^{\prime \prime}(t)=12 t-42$. Setting $a(t)=0$ gives $t=7 / 2$, the time when the acceleration is zero. Also $a(t)<0$ for $t \in[0,7 / 2)$ and $a(t)>0$ for $t \in(7 / 2,6]$.

3a By the Chain Rule,

$$
f^{\prime}(x)=\frac{1}{2}\left(x^{3}+4\right)^{-1 / 2}\left(3 x^{2}\right)=\frac{3 x^{2}}{2 \sqrt{x^{3}+4}} .
$$

3b Again by the Chain Rule,

$$
g^{\prime}(t)=\cos (9 \cos t) \cdot(-9 \sin t)=-9 \cos (9 \cos t) \sin t
$$

3c Applying the Chain Rule twice,

$$
h^{\prime}(z)=\sec ^{2}(\sqrt{\sec z}) \cdot \frac{1}{2}(\sec z)^{-1 / 2} \cdot \sec z \tan z=\frac{\sec ^{2}(\sqrt{\sec z}) \sec z \tan z}{2 \sqrt{\sec z}}
$$

4 Differentiating both sides,

$$
\begin{aligned}
3(x y+1)^{2}\left(x y^{\prime}+y\right)=1-2 y y^{\prime} & \Rightarrow 3 x(x y+1)^{2} y^{\prime}+2 y y^{\prime}=1-3 y(x y+1)^{2} \\
& \Rightarrow y^{\prime}=\frac{1-3 y(x y+1)^{2}}{3 x(x y+1)^{2}+2 y}
\end{aligned}
$$

5 With implicit differentiation we have

$$
9 x^{2}+21 y^{2} y^{\prime}=10 y^{\prime} \Rightarrow y^{\prime}(x, y)=\frac{9 x^{2}}{10-21 y^{2}}
$$

The slope of the curve at $(1,1)$ is thus

$$
y^{\prime}(1,1)=\frac{9(1)^{2}}{10-21(1)^{2}}=-\frac{9}{11}
$$

Now, the equation of the tangent line is $y-1=-\frac{9}{11}(x-1)$, or

$$
y=-\frac{9}{11} x+\frac{20}{11}
$$

6 Area of rectangle at time t is

$$
A(t)=(2+t)(4+t)=t^{2}+6 t+8
$$

Rate of change of the area at time t is $A^{\prime}(t)=2 t+6$. Thus at time $t=20$ seconds the area is increasing at a rate of $A^{\prime}(20)=2(20)+6=46 \mathrm{~cm}^{2} / \mathrm{s}$.

7 The ground, wall, and ladder form a right triangle with hypotenuse of length 13 . If x is the distance between the wall and the foot of the ladder, and y is the distance between the ground and the top of the ladder, then $x^{2}+y^{2}=13^{2}$. Both x and y are functions of time t, and so differentiating with respect to t yields

$$
2 x(t) x^{\prime}(t)+2 y(t) y^{\prime}(t)=0 \Rightarrow y^{\prime}(t)=-\frac{x(t) x^{\prime}(t)}{y(t)}
$$

We're given that $x^{\prime}(t)=0.5 \mathrm{ft} / \mathrm{s}$ for all $t \geq 0$, and of course we also have $y(t)=\sqrt{169-x^{2}(t)}$. Thus

$$
y^{\prime}(t)=-\frac{x(t)}{2 \sqrt{169-x^{2}(t)}}
$$

Now, at the time t when $x(t)=5 \mathrm{ft}$, we obtain

$$
y^{\prime}(t)=-\frac{5}{2 \sqrt{169-5^{2}}}=-\frac{5}{24}
$$

that is, at the time t when the foot of the ladder is 5 ft from the wall, the top of the ladder is sliding down the wall at a rate of $-5 / 24 \mathrm{ft} / \mathrm{s}$.

