MATH 140 ExaM #1 KEY (SUMMER 2013)
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2a (r* — 7r +4)%? is a composition of a polynomial function with a radical function, and 3
is in its domain. Therefore, by direct substitution,

lim(r* — 7r +4)7° = [(3)" — 7(3) +4]/* = (V64)" = 4> = 16.
rT—
2b Combine the fractions for best results:
12 2t 2+ 2t t(t + 2
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2c¢  Multiply by conjugate of the numerator:
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3 Let f(x) = 2225z +cosz and h(z) = sinz+1. Since lim,_,o+ f(z) = 1 and lim,_,o+ h(x) =
1, by the Squeeze Theorem it follows that lim, .o+ g(x) = 1 also.

4 Factor numerator and denominator:

ozt 1
Jx) = x(r —2)%

The rational expression is seen to be in reduced form, and so vertical asymptotes for f are
r =0 and x = 2. We have

lim f(z) =00 and lim f(x)= oo,
x—27F T—2~

and so lim, 5 f(x) = 0co. Also

lim f(z) =00 and lim f(z)= —o0,

z—07+ z—0~

and so lim,_,o f(x) can only be said to not exist.
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5 Recall that in general V2?2 = |z|. Now, when  — oo we have z > 0, so then Va2 = z and
we obtain
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m f(x)= lim = lm
z—00 w00 203 4 /926 4 1524 @00 203 + | /a6(9 + 15/2?)
. 4 . Az’
= lim = lim
v=00 273 4 |]3\/9 4 15/22 @00 203 + 23, /9 + 15 /22

4 4 4
lim = .
22002 4+ 1/9+15/22  2+V/94+0 9

On the other hand x — —oo implies x < 0, so then V2?2 = —x and we obtain

lim f(z) I 43 i 43
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Hence the horizontal asymptotes of f are y = ‘—51 and y = —4.

6 The function f is continuous at 4 if and only if lim, 4 f(x) = f(4) = 13; but
lim f(z) = lim(2? —5) = 4> - 5 =11 # 13 = f(4),
z—4 z—4

and therefore f is not continuous at 4.

7 Continuity from the left at 1 requires that lim, ,;- g(z) = ¢(1). Since
lim g(x) = lim (2 +2)=1>+1=2
z—1- z—1—

and ¢g(1) = a, we set a = 2 to secure continuity from the left at 1.
Continuity from the right at 1 requires that lim, ,;+ g(z) = g(1). Since

li — lim (3z45) =3(1)+5=38
lim g(z) = lim (3z +5) = 3(1) +

and ¢g(1) = a, we set a = 8 to secure continuity from the right at 1.
We see that there can be no value for a that results in continuity from the left and right at
1 simultaneously, which means there is no a value which will make g continuous at 1.

8a By the definition of derivative:
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8b Slope will be f/(9) = —1/54, so equation is y = —=;z + 3.

9a By the definition of derivative:
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9b Slope of tangent line is

so equation is

or simply

Extra Credit: Let ¢ > 0. Choose o« = {/5/€. Suppose that x > «. Then we have x > {/5/e,

and since
. 5. 5 1

r>4/ble & 0>- & —>-—

€ 5 €

it follows that -

= -0

<€
3

and therefore lim,_ o, 5/2% = 0.



