
Math 140 Exam #3 Key (Summer 2012)

1a. We know 5
√

32 = 2, so get the equation of the tangent line to the curve f at (32, 2). First,

f ′(x) =
1

5
x−4/5 ⇒ f ′(32) =

1

5
(32)−4/5 =

1

5
· 1

16
=

1

80
,

so the slope of the line is 1
80

. Now, using point-slope formula, we get

y − 2 =
1

80
(x− 32) ⇒ L(x) =

1

80
x+

8

5

as the linearization for f centered at x = 32.

1b. 5
√

33 = f(33) ≈ L(33) = 1
80

(33) + 8
5

= 2.0125. (Actual value is 2.012346617..., which
amounts to only a 0.0076% error.)

2. Let f(x) = 2x− 1− sinx, so f(0) = −1 < 0 and f(π) = 2π− 1 > 0. Since f is continuous
on [0, π] and differentiable on (0, π), the Intermediate Value Theorem implies there exists some
r ∈ (0, π) such that f(r) = 0. Now suppose that f has two real zeros r1 and r2, with r1 < r2.
Since f(r1) = 0 = f(r2), f is continuous on [r1, r2], and f is differentiable on (r1, r2), by
Rolle’s Theorem there exists some c ∈ (r1, r2) such that f ′(c) = 0. Since f ′(x) = 2 − cosx,
we obtain cos c = 2. But this is a contradiction, since the cosine function cannot equal 2 at
any real number! Hence f cannot have more than one real zero, and since it’s been shown
to have at least one real zero, we conclude that it must have exactly one real zero. Therefore
2x− 1− sinx = 0 has exactly one real root.

3a.

∫
(3x−2 − 4x2 + 1)dx = −3x−1 − 4

3
x3 + x+ C

3b.

∫
[cos(4t)− sin(t/4)]dt =

1

4
sin(4t) + 4 cos(t/4) + C

3c. Let u = 1 − 4x3, so by the mechanism of “u-substitution” we get du = −12x2dx ⇒
−1

6
du = 2x2dx, and so∫

2x2

√
1− 4x3

dx = −1

6

∫
1√
u
du = −1

6

∫
u−1/2du = −1

6
· 2u1/2 = −1

3

√
1− 4x3 + c,

where c is an arbitrary constant.

4. f(x) =

∫
f ′(x)dx =

∫
(8x− 5)dx = 4x2 − 5x+ c, which implies that f(0) = c. But we’re

given f(0) = 4, so we obtain c = 4 and arrive at the solution f(x) = 4x2 − 5x+ 4.



2

5. Area ≈ 2[f(1) + f(3) + f(5) + f(7) + f(9)] = 2(1/3 + 1/7 + 1/11 + 1/15 + 1/19) =
10, 042/7, 315 ≈ 1.3728 m.
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0
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6. lim
∆→0

n∑
k=1

x̄k cos x̄k ∆xk =

∫ 2

1

x cosx dx

7a.

∫ 3

0

5f(x) dx = 5

∫ 3

0

f(x) dx = 5(2) = 10

7b.

∫ 6

3

[3f(x)− g(x)]dx = 3

∫ 6

3

f(x) dx−
∫ 6

3

g(x) dx = 3(−9)− 5 = −32

7c.

∫ 3

6

[f(x) + 2g(x)]dx = −
∫ 6

3

[f(x) + 2g(x)]dx = −[(−9) + 2(5)] = −1

8. We can partition [2, 6] into n subintervals each of length ∆x = 6−2
n

= 4
n
, and evaluate

f(x) = 3x2 − 5 at the right endpoint of each subinterval so that x∗i = 2 + 4
n
i. By definition,∫ 6

2

f(x) dx = lim
n→∞

n∑
i=1

f(x∗i )∆xi = lim
n→∞

n∑
i=1

[
3

(
2 +

4

n
i

)2

− 5

]
· 4

n

= lim
n→∞

4

n

n∑
i=1

(
7 +

48

n
i+

48

n2
i2
)

= lim
n→∞

4

n

(
7n+

48

n

n∑
i=1

i+
48

n2

n∑
i=1

i2

)

= lim
n→∞

4

n

(
7n+

48

n
· n(n+ 1)

2
+

48

n2
· n(n+ 1)(2n+ 1)

6

)
= lim

n→∞

188n2 + 192n+ 32

n2
= 188.
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9.
d

dx

∫ x4

7

sin5(t) dt = sin5(x4) · 4x3 = 4x3 sin5(x4).

10a.

∫ 4

1

5t6 −
√
t

t2
dt =

∫ 4

1

(5t4 − t−3/2)dt =
[
t5 + 2t−1/2

]4
1

= (1024 + 1)− (1 + 2) = 1022.

10b. Let u = sin θ, so du = cos θ dθ. When x = 0 we get u = 0 also; and when x = π/2 we
get u = 1. Thus we obtain∫ π/2

0

sin2 θ cos θ dθ =

∫ 1

0

u2 du =

[
1

3
u3

]1

0

=
1

3
.

11. First we find the points where the curves generated by f and g intersect:

f(x) = g(x) ⇒ 2x2 = x2 + 4 ⇒ x2 = 4 ⇒ x = ±2,

so the points are (−2, f(−2)) = (−2, 8) and (2, f(2)) = (2, 8). Between x = −2 and x = 2 we
have f(0) = 0 < 4 = g(0), so g(x) ≥ f(x) when −2 ≤ x ≤ 2. We now find the area A of the
bounded region:

A =

∫ 2

−2

[g(x)− f(x)]dx =

∫ 2

−2

(4− x2)dx =

[
4x− 1

3
x3

]2

−2

= (8− 8/3)− (−8 + 8/3) = 16− 16/3 =
32

3
.

x

y

2

8

20−2

g

f

12. In the first quadrant the curve given by f(x) = 4 − x2 goes from (0, 4) to (2, 0), so the
limits of integration will be x = 0 and x = 2: Volume V is thus

V =

∫ 2

0

π[f(x)]2 dx = π

∫ 2

0

(4− x2)2 dx = π

∫ 2

0

(16− 8x2 + x4) dx

= π

[
16x− 8

3
x3 +

1

5
x5

]2

0

= π

[
16(2)− 8

3
(8) +

1

5
(32)

]
=

256

15
π.


