MATH 140 EXAM #1 KEY (SUMMER 2011)

1.
$$\Delta V_{[0,3]} = 15.3$$
, $\Delta V_{[0,2]} = 20.2$, $\Delta V_{[0,1]} = 25.1$, $\Delta V_{[0,h]} = \frac{-4.9h^2 + 30h}{h} = -4.9h + 30h$

- **2.** (a) $\lim_{x \to -1} g(x) = 2$; (b) $\lim_{x \to 1^{-}} g(x) = 4$; (c) $\lim_{x \to 1^{+}} g(x) = 5$; (d) $\lim_{x \to 1} g(x)$ D.N.E. since $\lim_{x \to 1^{-}} g(x) \neq \lim_{x \to 1^{+}} g(x)$; (e) $\lim_{x \to 5^{-}} g(x) = 5$.
- **3a.** Since the domain of the function is (2,3] and the limit approaches 3 from the left, we can employ direct substitution: $\lim_{x\to 3^-} \sqrt{\frac{x-3}{2-x}} = \sqrt{\frac{3-3}{2-3}} = 0$.
- **3b.** $\lim_{x \to 3} \frac{(x-3)(x+1)}{x-3} = \lim_{x \to 3} (x+1) = 3+1 = 4.$
- **3c.** $\lim_{x \to 25} \frac{\sqrt{x} 5}{x 25} = \lim_{x \to 25} \frac{\sqrt{x} 5}{(\sqrt{x} 5)(\sqrt{x} + 5)} = \lim_{x \to 25} \frac{1}{\sqrt{x} + 5} = \frac{1}{\sqrt{25} + 5} = \frac{1}{10}.$
- **4.** $\lim_{x \to 7^+} \frac{9}{x 7} = +\infty$; $\lim_{x \to 7^-} \frac{9}{x 7} = -\infty$; $\lim_{x \to 7} \frac{9}{x 7} = \text{D.N.E.}$
- 5. For all $x \neq 0$ we have $-1 \leq \cos \frac{2}{x} \leq 1$, which we can multiply through by x^4 to get $-x^4 \leq x^4 \cos \frac{2}{x} \leq x^4$. Then, defining $f(x) = -x^4$, $g(x) = x^4 \cos \frac{2}{x}$, and $h(x) = x^4$, and noting that we have $f(x) \leq g(x) \leq h(x)$ and $\lim_{x\to 0} f(x) = \lim_{x\to 0} h(x) = 0$, it follows from the Squeeze Theorem that $\lim_{x\to 0} x^4 \cos \frac{2}{x} = \lim_{x\to 0} g(x) = 0$.
- **6.** Recall that in general $\sqrt{x^2} = |x|$. Now, when $x \to \infty$ we have x > 0, so then $\sqrt{x^2} = x$ and we obtain $\lim_{x \to \infty} \frac{\sqrt{x^2 + 2x + 6} 3}{x 1} = \lim_{x \to \infty} \frac{x\sqrt{1 + 2/x + 6/x^2} 3}{x 1} = \lim_{x \to \infty} \frac{\sqrt{1 + 2/x + 6/x^2} 3/x}{1 1/x} = \frac{\sqrt{1 + 0 + 0} 0}{1 0} = 1.$ On the other hand $x \to -\infty$ implies x < 0, so then $\sqrt{x^2} = -x$ and we obtain $\lim_{x \to \infty} \frac{\sqrt{x^2 + 2x + 6} 3}{1 0} = 1$.

On the other hand $x \to -\infty$ implies x < 0, so then $\sqrt{x^2} = -x$ and we obtain $\lim_{x \to -\infty} \frac{\sqrt{x^2 + 2x + 6} - 3}{x - 1} = \lim_{x \to -\infty} \frac{-x\sqrt{1 + 2/x + 6/x^2} - 3}{x - 1} = \lim_{x \to -\infty} \frac{-\sqrt{1 + 2/x + 6/x^2} - 3/x}{1 - 1/x} = \frac{-\sqrt{1 + 0 + 0} - 0}{1 - 0} = -1$. Hence the horizontal asymptotes of f are g = 1 and g = -1.

A vertical asymptote might lie at x=1; however, since $\lim_{x\to 1}\left(\frac{\sqrt{x^2+2x+6}-3}{x-1}\cdot\frac{\sqrt{x^2+2x+6}+3}{\sqrt{x^2+2x+6}+3}\right)=\lim_{x\to 1}\frac{(x+3)(x-1)}{(x-1)(\sqrt{x^2+2x+3}+3)}=\lim_{x\to 1}\frac{x+3}{\sqrt{x^2+2x+3}+3}=\frac{1+3}{\sqrt{1^2+2\cdot 1+3}+3}=\frac{4}{\sqrt{6}+3}\neq \pm \infty,$ this is not the case.

- 7. The function f is not continuous at 1 since $\lim_{x\to 1} f(x) \neq f(1) = 1$, as can be seen by evaluating one-sided limits: $\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} 1/x = 1$ and $\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} (1-x^2) = 0$.
- 8. Let $f(x) = 2x^3 + x 2$, so f is a polynomial function and thus continuous everywhere, which includes the interval [-1, 1]. Now, since f(-1) = -5, f(1) = 1, and 0 lies between -5 and 1, the Intermediate Value Theorem

implies that there exists some $c \in (-1,1)$ such that f(c) = 0. Therefore $2c^3 + c - 2 = 0$ and the equation has at least one solution in (-1,1).

9a. Either version of the definition will do:
$$\lim_{x \to -1} \frac{f(x) - f(-1)}{x - (-1)} = \lim_{x \to -1} \frac{\frac{1}{3 - 2x} - \frac{1}{5}}{x + 1} = \lim_{x \to -1} \frac{5 - (3 - 2x)}{(x + 1) \cdot 5(3 - 2x)} = \lim_{x \to -1} \frac{2(x + 1)}{(x + 1)(15 - 10x)} = \lim_{x \to -1} \frac{2}{15 - 10x} = \frac{2}{25}.$$

9b. Slope of line is 2/25 and it contains the point (-1, 1/5), so point-slope formula yields $y - \frac{1}{5} = \frac{2}{25}(x+1)$, or $y = \frac{2}{25}x + \frac{7}{25}$.

10a.
$$g'(w) = -27w^{-10}$$

10b.
$$f'(t) = 48t^7 - 3t^2$$

10c.
$$h'(x) = \frac{(x^2 - 1)(4x^3) - (x^4 + 1)(2x)}{(x^2 - 1)^2} = \frac{2x^5 - 4x^3 - 2x}{(x^2 - 1)^2}$$