
MATH 140 EXAM #3 KEY (SUMMER 2010)

1a. s′(t) = 12t3 + 12t2 − 12t = 12t(t2 + t − 1), so s′(t) = 0 implies that t = 0,
−1±

√
5

2
are the critical numbers.

1b. f ′(x) =
4
5
x−1/5(x − 4)2 + x4/5 · 2(x − 4) = 2(x − 4)

[
x4/5 +

2
5
x−1/5(x− 4)

]
=

2
5

(x − 4)(7x − 8)x−1/5, so the

critical numbers are x = 0, 4, 8/7.

2a. f ′(x) = 4x3 − 4x = 4x(x2 − 1) = 4x(x − 1)(x + 1), so the critical numbers are 0, 1, −1. We evaluate:
f(−2) = 11, f(−1) = 2, f(0) = 3, f(1) = 2, f(3) = 66. Absolute maximum is f(3) = 66, and absolute minimum is
f(−1) = f(1) = 2.

2b. f ′(x) = cosx− sinx. Now, f ′(x) = 0 ⇒ cosx = sinx ⇒ tanx = 1 ⇒ x =
π

4
, which is the only solution that

fits in the interval
[
0,
π

3

]
. Now, f(0) = 1, f

(π
4

)
=

2√
2

=
√

2, f
(π

3

)
= sin

π

3
+ cos

π

3
=
√

3
2

+
1
2

=
√

3 + 1
2

. Absolute

maximum: f
(π

4

)
=
√

2, absolute minimum: f(0) = 1.

3. f is continuous on (−∞,−2) ∪ (−2,∞), which contains the interval [1, 4]. Also f is differentiable on (−∞,−2) ∪
(−2,∞), which contains the interval (1, 4). By the Mean Value Theorem there exists some c ∈ (1, 4) such that

f ′(c) =
f(4)− f(1)

4− 1
=

1
3

(
2
3
− 1

3

)
=

1
9

. Now, f ′(x) =
2

(x+ 2)2
, so f ′(c) =

1
9

implies that
2

(c+ 2)2
=

1
9

, or

c = −2± 3
√

2. Now, notice that −2 + 3
√

2 lies in (1, 4).

4a. h′(x) = 15x2(x2−1), which should make clear that h′(x) > 0 on (−∞,−1)∪(1,∞) and h′(x) < 0 on (−1, 0)∪(0, 1);
thus, h(x) is increasing on (−∞,−1) ∪ (1,∞) and decreasing on (−1, 0) ∪ (0, 1).

4b. Local maximum is h(−1) = 5, and local minimum is h(1) = 1.

4c. h′′(x) = 60x3 − 30x = 30x(
√

2x − 1)(
√

2x + 1), so h′′(x) > 0 on
(
− 1√

2
, 0
)
∪
(

1√
2
,∞
)

and h′′(x) < 0 on(
−∞,− 1√

2

)
∪
(

0,
1√
2

)
. So h(x) is concave up on

(
− 1√

2
, 0
)
∪
(

1√
2
,∞
)

and concave down on
(
−∞,− 1√

2

)
∪(

0,
1√
2

)
. Inflection points are at x = − 1√

2
, 0,

1√
2

.

5a. = lim
y→∞

−3y2 + 2
5y2 + 4y

= −3
5

.

5b. = lim
x→−∞

√
x6(9− x−5)
x3 + 1

= lim
x→−∞

|x|3
√

9− 1/x5

x3 + 1
= lim

x→−∞

−x3
√

9− 1/x5

x3 + 1
= lim

x→−∞

−
√

9− 1/x5

1 + 1/x3
=
−
√

9
1

= −3.

5c. = lim
x→∞

(√
x4 + 6x2 − x2

1
·
√
x4 + 6x2 + x2

√
x4 + 6x2 + x2

)
= lim

x→∞

6x2

√
x4 + 6x2 + x2

= lim
x→∞

6x2

x2
√

1 + 6/x2 + x2

= lim
x→∞

6√
1 + 6/x2 + 1

=
6√

1 + 0 + 1
= 3.



6. A point on the line has coordinates (x, 2x − 9). The distance between (x, 2x − 9) and (5,−2) is given by
D(x) =

√
(x− 5)2 + ((2x− 9)− (−2))2 =

√
5x2 − 38x+ 74. Now, D′(x) = 1

2 (5x2 − 38x + 74)−1/2 · (10x − 38), and
it’s seen that D′(x) = 0 only when x = 38

10 . That is, the point ( 19
5 , 2( 19

5 ) − 9) = ( 19
5 ,−

7
5 ) is the closest to (5,−2).

7. V = πr2h, where V is regarded as a constant. We write h =
V

πr2
and thereby eliminate the variable h. The

surface area S of the can is given by S = πr2 + 2πrh, which then gives the function S(r) = πr2 +
2V
r

. We want

to find the minimum value for this function, so we obtain its derivative:
dS

dr
= 2πr − 2V

r2
. The derivative does not

exist when r = 0, but we can’t have a can with zero radius so forget this critical number. Setting
dS

dr
= 0 and solving

yields: 2πr− 2V
r2

= 0, or r = 3

√
V

π
. This is what we want. Dimensions of the can: radius of 3

√
V

π
, height of 3

√
V

π
(put

r = 3

√
V

π
into h =

V

πr2
).

8.
∫ (

6x1/2 − x1/6
)
dx = 6 · 2

3
x3/2 − 6

7
x7/6 + C = 4x3/2 − 6

7
x7/6 + C.

9. f ′(x) =
∫
f ′′(x)dx = 5x4 + 4x3 + 4x+C ⇒ f(x) =

∫
f ′(x)dx = x5 +x4 + 2x2 +Cx+D. Now, f(0) = 8 implies

that D = 8, giving us f(x) = x5 +x4 + 2x2 +Cx+ 8. Next, f(1) = 5 gives 1 + 1 + 2 +C+ 8 = 5, or C = −7. Therefore
f(x) = x5 + x4 + 2x2 − 7x+ 8.

10. Let f(x) = 4x5 + x3 + 2x + 1, which is a function that is continuous and differentiable on (−∞,∞). Now,
f(−1) = −6 < 0 and f(0) = 1 > 0, so by the Intermediate Value Theorem there exists some c ∈ (−1, 0) such that
f(c) = 0 (i.e. 4c5 + c3 + 2c+ 1 = 0). This demonstrates that the equation has at least one real root.

Now, suppose f has two real roots c1 and c2. Then f(c1) = 0 and f(c2) = 0. By the Mean Value Theorem (or
just apply its corollary, Rolle’s Theorem) there exists some number b between c1 and c2 such that f ′(b) = 0. Thus
20b4 + 3b2 + 2 = 0. But we can see that we must have f ′(x) ≥ 2 for all x ∈ (−∞,∞) since 20x4 ≥ 0 and 3x2 ≥ 0
always hold for f ′(x) = 20x4 + 3x2 + 2. So f ′(b) = 0 for some real number b is a contradiction. Hence f cannot have
two real roots.

Therefore f must have exactly one real root. �


