
MATH 140 EXAM #1 KEY (SUMMER 2010)

1a. lim
x→−2+

x− 1
x2(x+ 2)

= −∞

1b. lim
x→−1

x2 − 4x
x2 − 3x− 4

= lim
x→−1

x(x− 4)
(x+ 1)(x− 4)

= lim
x→−1

x

x+ 1
= DNE, since the one-sided limits are not equal(

lim
x→−1+

x

x+ 1
= −∞ while lim

x→−1−

x

x+ 1
= +∞

)
.

1c. lim
x→7

√
x+ 2− 3
x− 7

= lim
x→7

√
x+ 2− 3
x− 7

·
√
x+ 2 + 3√
x+ 2 + 3

= lim
x→7

x− 7
(x− 7)(

√
x+ 2 + 3)

= lim
x→7

1√
x+ 2 + 3

=
1
6

.

1d. lim
x→3

(2x + |x − 3|) = 2(3) + 0 = 6, where it’s necessary to work with one-sided limits to resolve the absolute
value.

2. Let f(x) = 2x and h(x) = x4 − x2 + 2. Note that limx→1 f(x) = limx→1 h(x) = 2. Since f(x) ≤ g(x) ≤ h(x) for
all x (and in particular in a neighborhood of 1), the Squeeze Theorem implies that limx→1 g(x) = 2 also.

3. For all x 6= 0 we have −1 ≤ cos 2
x ≤ 1, which we can multiply through by x4 to get −x4 ≤ x4 cos 2

x ≤ x4. We can
define f(x) = −x4, g(x) = x4 cos 2

x , and h(x) = x4 if desired, and note that we have the following: f(x) ≤ g(x) ≤ h(x)
and limx→0 f(x) = limx→0 h(x) = 0. By the Squeeze Theorem, then limx→0 x

4 cos 2
x = limx→0 g(x) = 0.

4a. Let ε > 0. (Writing in the margin: we need to find some δ > 0 such that when we have 0 < |x− 3| < δ, it follows
that |(2x + 7) − 13| < ε. Manipulate the second inequality to bring |x − 3| out in the open: |(2x + 7) − 13| < ε ⇒
|2(x−3)| < ε⇒ |x−3| < ε/2. This suggests that we choose δ = ε/2.) Back to the proof: choose δ = ε/2. Now, suppose
that 0 < |x−3| < δ. Then |x−3| < ε/2, and so multiplying by 2 gives 2|x−3| < ε⇒ |2x−6| < ε⇒ |(2x+7)−13| < ε.
This completes the proof.

4b. Let ε > 0 (Some beer coaster scribblings: we need some δ > 0 such that whenever 0 < |x− 2| < δ, it follows that
|(5−7x)−(−9)| < ε. Manipulate the second inequality to bring out |x−2|: |(5−7x)−(−9)| = |5−7x+9| = |−7x+14| =
|−7(x−2)| = |−7| · |x−2| = 7|x−2|, so |(5−7x)−(−9)| < ε becomes 7|x−2| < ε, which yields |x−2| < ε/7. The Gods
of Mathematics are telling us to choose δ to be ε/7.) Back to the proof: choose δ = ε/7. Suppose that 0 < |x− 2| < δ.
Then |x− 2| < ε/7, and so multiplying by 7 gives 7|x− 2| < ε⇒ |7x− 14| < ε⇒ |14− 7x| < ε⇒ |(5− 7x)− (−9)| < ε.
This is what we needed to show.

5. The function f is not continuous at 1 since limx→1 f(x) 6= f(1) = 1, as can be seen by evaluating one-sided limits:
limx→1+ f(x) = limx→1+ 1/x = 1 and limx→1− f(x) = limx→1−(1− x2) = 0.

6. The function ϕ is discontinuous only at 1 and 3: limx→1 ϕ(x) 6= ϕ(1) = 2 since limx→1+ ϕ(x) = limx→1+ 1/x = 1,
and limx→3 ϕ(x) 6= ϕ(3) = 0 since limx→3− ϕ(x) = limx→3− 1/x = 1/3. We see ϕ is continuous from the left at 1 and
continuous from the right at 3.

7. Define f(x) =
√
x− 5 − 1

x+3 . The function f is continuous on its domain [5,∞), so certainly it is continuous
on the interval [5, 6]. Now, f(5) = 0 − 1/8 = −1/8 < 0 and f(6) = 1 − 1/9 = 8/9 > 0, so 0 lies between f(5)
and f(6). By ye olde Intermediate Value Theorem, then, there exists some c ∈ (5, 6) such that f(c) = 0. Now,
f(c) = 0 ⇒

√
c− 5 − 1

c+3 = 0 ⇒
√
c− 5 = 1

c+3 , which shows that c is a real root of the equation
√
x− 5 = 1

x+3 .
Therefore the equation has at least one real root.

8. Let f(x) =
x− 1
x− 2

. The tangent line will contain the point (3, 2) and have slope f ′(3) = lim
h→0

f(3 + h)− f(3)
h

=

lim
h→0

[(3 + h)− 1]/[(3 + h)− 2]− 2
h

= lim
h→0

(2 + h)/(1 + h)− 2
h

= lim
h→0

(2 + h)− 2(1 + h)
h(1 + h)

= lim
h→0

2 + h− 2− 2h
h(1 + h)

=

lim
h→0

−h
h(1 + h)

= lim
h→0

−1
1 + h

= −1. The point-slope formula then gives the equation of the line: y − 2 = −(x − 3), or

y = −x+ 5.

9. Let s(t) = 40t − 16t2. The velocity of the ball at time t = 2 equals s′(2) = limh→0
s(2 + h)− s(2)

h
=

lim
h→0

40(2 + h)− 16(2 + h)2 − 16
h

= lim
h→0

80 + 40h− 64− 64h− 16h2 − 16
h

= lim
h→0

−24h− 16h2

h
= lim

h→0
(−24 − 16h) =

−24 ft/s.


