
Math 140 Exam #4 Key (Spring 2024)

1a Find the areas of the triangles below: integral equals 73.
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1b The area under the curve y = f(x) is a 4-by-5 rectangle and a triangle with base 2 and
height 6. Integral equals 26.

2a Expanding the product, we have∫ 4
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4
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]4
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= 0.

2b 2
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=
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2
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2c

∫ 3π/4
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csc2 θ dθ =
[
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]3π/4
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= cot
π
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4
= 1− (−1) = 2.

3 By the Fundamental Theorem of Calculus and Chain Rule:

d

dx

∫ 9

cosx
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.

4a Let u = x2 + 1, giving du/dx = 2x and thus du = 2xdx. The integral becomes∫ 5

1

1
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du =

[
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u

]5
1

=
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5
.

4b Let u = 10x+ 7, so du = 10dx and the integral becomes∫
1

10
sec2 u du = 2 sinu+ C =

1

10
tanu+ C =

1

10
tan(10x+ 7) + C.
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4c Let u = 3z + 2, so du = 3 dz and z = u−2
3
. The integral becomes∫ (

u− 2

3
+ 1

)√
u · 1

3
du =

1
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∫
(u3/2 + u1/2) du =
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[
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u5/2 +
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]
+ C

=
2
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(3z + 2)5/2 +

2
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(3z + 2)3/2 + C.

5 The curves y = x/4 and y = 3
√
x intersect where x/4 = 3

√
x, or equivalently x3 − 64x = 0.

Solutions are x = −8, 0, 8. Area A is

A =

∫ 0
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x
)
dx+
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(
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)
dx = 4 + 4 = 8.

6 Volume is

V =

∫ 3

0

A(x)dx =

∫ 3

0

1

2
π
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)2

dx =
π
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∫ 3

0

(x2 − 6x+ 9)dx =
9π

8
.

7 Using the disc method here, the volume is

V =

∫ 4

2

π
(√

25− x2
)2
dx =

94

3
π.


