Math 140 Exam \#1 Key (Spring 2024)

1a Factoring the numerator, we have

$$
\lim _{t \rightarrow-1} \frac{[(2 t-1)-3][(2 t-1)+3]}{t+1}=\lim _{t \rightarrow-1} 2(2 t-4)=2[2(-1)-4]=-12
$$

1b Getting a common denominator, we have

$$
\lim _{x \rightarrow 2} \frac{x-2}{x(x-2)}=\lim _{x \rightarrow 2} \frac{1}{x}=\frac{1}{2}
$$

1c Multiply by the conjugate of the numerator:

$$
\lim _{x \rightarrow 3}\left(\frac{\sqrt{x+1}-2}{x-3} \cdot \frac{\sqrt{x+1}+2}{\sqrt{x+1}+2}\right)=\lim _{x \rightarrow 3} \frac{x-3}{(x-3)(\sqrt{x+1}+2)}=\lim _{x \rightarrow 3} \frac{1}{\sqrt{x+1}+2}=\frac{1}{4} .
$$

1d Factoring the denominator:

$$
\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{(\cos \theta-1)(\cos \theta+1)}=\lim _{\theta \rightarrow 0} \frac{1}{\cos \theta+1}=\frac{1}{2}
$$

2a $\lim _{y \rightarrow 1} \frac{2 y}{|1-y|}=\frac{2}{\left(\rightarrow 0^{+}\right)}=+\infty$

2b $\lim _{z \rightarrow 3^{-}} \frac{(z-2)(z-1)}{z-3}=\frac{(1)(2)}{\left(\rightarrow 0^{-}\right)}=-\infty$
2c $\lim _{x \rightarrow 2^{+}} \frac{1}{\sqrt{x(x-2)}}=\frac{1}{\sqrt{2\left(\rightarrow 0^{+}\right)}}=\frac{1}{\left(\rightarrow 0^{+}\right)}=+\infty$

2d $\lim _{x \rightarrow 2^{-}} \frac{1}{\sqrt{x(x-2)}}=\frac{1}{\sqrt{2\left(\rightarrow 0^{-}\right)}}=\frac{1}{\sqrt{\left(\rightarrow 0^{-}\right)}}=$DNE, since the square root of a negative number is not real-valued.

$$
\text { 2e } \lim _{x \rightarrow-\infty}\left(3 x^{7}+x^{2}\right)=\lim _{x \rightarrow-\infty} x^{2}\left(3 x^{5}+1\right)=(\rightarrow-\infty)^{2}(\rightarrow-\infty)=(+\infty)(-\infty)=-\infty
$$

3a Since $\sqrt{x^{2}}=|x|$ in general, we have

$$
\lim _{x \rightarrow \infty} \frac{|x| \sqrt{1+2 / x+6 / x^{2}}}{x-1}=\lim _{x \rightarrow \infty} \frac{x \sqrt{1+2 / x+6 / x^{2}}}{x-1}=\lim _{x \rightarrow \infty} \frac{\sqrt{1+2 / x+6 / x^{2}}}{1-1 / x}=\frac{\sqrt{1}-0}{1-0}=1
$$

and

$$
\lim _{x \rightarrow-\infty} \frac{|x| \sqrt{1+2 / x+6 / x^{2}}}{x-1}=\lim _{x \rightarrow-\infty} \frac{-x \sqrt{1+2 / x+6 / x^{2}}}{x-1}=\lim _{x \rightarrow \infty} \frac{-\sqrt{1+2 / x+6 / x^{2}}}{1-1 / x}=-1
$$

and so the horizontal asymptotes are $y=1$ and $y=-1$.

3b The only candidate for a vertical asymptote is $x=1$, but we must see if $\lim _{x \rightarrow 1^{-}} f(x)$ or $\lim _{x \rightarrow 1^{+}} f(x)$ are infinite. In fact,

$$
\lim _{x \rightarrow 1}\left(\frac{\sqrt{x^{2}+2 x+6}-3}{x-1} \cdot \frac{\sqrt{x^{2}+2 x+6}+3}{\sqrt{x^{2}+2 x+6}+3}\right)=\lim _{x \rightarrow 1} \frac{x+3}{\sqrt{x^{2}+2 x+6}+3}=\frac{2}{3} \neq \pm \infty
$$

and so $x=1$ is not a vertical asymptote. There is no vertical asymptote.

4a $\lim _{x \rightarrow 0^{+}} F(x)=\lim _{x \rightarrow 0^{+}} 2 x^{3}=0 \neq 1=F(0)$, so that $\lim _{x \rightarrow 0} F(x) \neq F(0)$, and thus F is not continuous at 0 .

4b We already found that $\lim _{x \rightarrow 0^{+}} F(x) \neq F(0)$, so F is not continuous from the right at 0 ; but

$$
\lim _{x \rightarrow 0^{-}} F(x)=\lim _{x \rightarrow 0^{-}}\left(x^{3}+4 x+1\right)=1=F(0)
$$

shows that F is continuous from the left at 0 .

5a We have

$$
g^{\prime}(2)=\lim _{h \rightarrow 0} \frac{g(2+h)-g(2)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{3 h+5}-\frac{1}{5}}{h}=\lim _{h \rightarrow 0} \frac{5-(3 h+5)}{5 h(3 h+5)}=\lim _{h \rightarrow 0} \frac{-3}{5(3 h+5)}=-\frac{3}{25} .
$$

$\mathbf{5 b}$ Slope of the tangent line at $\left(2, \frac{1}{5}\right)$ is $g^{\prime}(2)=-\frac{3}{25}$, so the line is $y=-\frac{3}{25} x+\frac{11}{25}$.

