1 We have $f^{\prime}(x)=1+2 \sin x$, so $f^{\prime}(x)=0$ on $[-\pi, \pi]$ when $x=-\frac{\pi}{6},-\frac{5 \pi}{6}$. These are the critical points. We evaluate:

$$
f(-\pi)=2-\pi, \quad f(\pi)=2+\pi, \quad f\left(-\frac{\pi}{6}\right)=-\sqrt{3}-\frac{\pi}{6}, \quad f\left(-\frac{5 \pi}{6}\right)=\sqrt{3}-\frac{5 \pi}{6} .
$$

The absolute maximum value of f on $[-\pi, \pi]$ is $f(\pi)=2+\pi$, and the absolute minimum value is $f\left(-\frac{\pi}{6}\right)=-\sqrt{3}-\frac{\pi}{6}$.

2a Domain is $(-\infty,-2) \cup(-2,2) \cup(2, \infty)$. The only intercept is $(0,0)$.
2b Horizontal asymptote: $y=1$. Vertical asymptotes: $x= \pm 2$.

2c Since

$$
f^{\prime}(x)=-\frac{8 x}{\left(x^{2}-4\right)^{2}}
$$

the only critical point of f is $x=0$.

2d For x in the domain of f, we have $f^{\prime}(x)>0$ for $x<0$, and $f^{\prime}(x)<0$ for $x>0$. By the Monotonicity Test f is increasing on $(-\infty,-2) \cup(-2,0)$, and decreasing on $(0,2) \cup(2, \infty)$. By the First Derivative Test f has a local maximum at $(0,0)$.

2e Here

$$
f^{\prime \prime}(x)=\frac{24 x^{2}+32}{\left(x^{2}-4\right)^{3}}
$$

so $f^{\prime \prime}(x)<0$ for $-2<x<2$, and $f^{\prime \prime}(x)>0$ for $x<-2$ and $x>2$. Therefore, by the Concavity Test, f is concave down on $(-2,2)$, and concave up on $(-\infty,-2)$ and $(2, \infty)$. There are no inflection points.

3 A point on $y=-2 x$ has the form $(x,-2 x)$, and this point's distance from $(-20,0)$ is

$$
d(x)=\sqrt{(x+20)^{2}+(-2 x)^{2}}=\sqrt{5 x^{2}+40 x+400}
$$

We can minimize $d^{2}(x)$ a bit easier than $d(x)$ itself. Define

$$
D(x)=d^{2}(x)=5 x^{2}+40 x+400 .
$$

Then $D^{\prime}(x)=0$ implies $10 x+40=0$, giving $x=-4$. The point on $y=-2 x$ closest to $(-20,0)$ is therefore $(-4,8)$. Distance between these points is $\sqrt{16^{2}+8^{2}}=8 \sqrt{5}$.

4 Say there are two fences of length x, and four fences of length y (which includes the two interior fences). We have $2 x+4 y=400$, or $x=200-2 y$. The area of the enclosed field is $A(y)=x y=-2 y^{2}+200 y$. Now, $A^{\prime}(y)=-4 y+200$, so $A^{\prime}(y)=0$ implies $y=50$. This corresponds to a maximum value for $A(y)$. With $y=50$ we have $x=100$, so the dimensions of the rectangle with maximum area is $100 \mathrm{ft} \times 50 \mathrm{ft}$, and the area is $5000 \mathrm{ft}^{2}$.

5 Let $f(x)=\sqrt[3]{x}$, so $f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}$. Since $\sqrt[3]{8}=2$, and 8 is near 7 , we find a linearization for f at $x=8$. This is

$$
L(x)=f^{\prime}(8)(x-8)+f(8)=\frac{x}{12}+\frac{4}{3} .
$$

Now,

$$
\sqrt[3]{7}=f(7) \approx L(7)=\frac{7}{12}+\frac{4}{3}=\frac{23}{12}=1.91 \overline{6}
$$

6 Let $f(x)=x^{5}+10 x+3$, so equation becomes $f(x)=0$. Since $f(-1)=-8<0$ and $f(0)=3>0$, by the Intermediate Value Theorem there exists some $c \in(-1,0)$ such that $f(c)=0$, and this value would have to be a real root for the equation. That is, the equation is sure to have at least one real root.

Suppose there exist two real roots $c_{1}<c_{2}$ for the equation, so $f\left(c_{1}\right)=f\left(c_{2}\right)=0$. Since the polynomial function f is everywhere continuous and differentiable, by Rolle's Theorem we conclude there must be some $r \in\left(c_{1}, c_{2}\right)$ for which $f^{\prime}(r)=0$. But this implies that $5 r^{4}+10=0$, or $r^{4}=-2$, so that r cannot be a real number, and thus it cannot lie in the interval $\left(c_{1}, c_{2}\right)$. Having arrived at a contradiction, we conclude that the equation cannot have two real roots, and therefore must have exactly one real root.

7a We have

$$
\lim _{x \rightarrow 0} \frac{\sin a x}{\sin b x} \stackrel{\text { LR }}{=} \lim _{x \rightarrow 0} \frac{a \cos a x}{b \cos b x}=\frac{a \cos 0}{b \cos 0}=\frac{a}{b} .
$$

7b Get a common denominator and use L'Hôpital's Rule twice:

$$
\begin{aligned}
\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{\sin x}\right) & =\lim _{x \rightarrow 0} \frac{\sin x-x}{x \sin x} \stackrel{\text { LR }}{=} \lim _{x \rightarrow 0} \frac{\cos x-1}{x \cos x+\sin x} \\
& \stackrel{\text { LR }}{=} \lim _{x \rightarrow 0} \frac{\sin x}{x \sin x-2 \cos x}=\frac{0}{0-2}=0 .
\end{aligned}
$$

$8 \mathbf{a} \quad \int\left(\frac{5}{t^{2}}+4 t^{2}\right) d t=\int\left(5 t^{-2}+4 t^{2}\right) d t=-\frac{5}{t}+\frac{4}{3} t^{3}+C$.

8b $\int\left(\cos 2 x-\csc ^{2} 8 x\right) d x=\frac{1}{2} \sin 2 x+\frac{1}{8} \cot 8 x+C$.

