1 We have $f'(x) = 1 + 2\sin x$, so f'(x) = 0 on $[-\pi, \pi]$ when $x = -\frac{\pi}{6}, -\frac{5\pi}{6}$. These are the critical points. We evaluate:

$$f(-\pi) = 2 - \pi$$
, $f(\pi) = 2 + \pi$, $f(-\frac{\pi}{6}) = -\sqrt{3} - \frac{\pi}{6}$, $f(-\frac{5\pi}{6}) = \sqrt{3} - \frac{5\pi}{6}$.

The absolute maximum value of f on $[-\pi, \pi]$ is $f(\pi) = 2 + \pi$, and the absolute minimum value is $f(-\frac{\pi}{6}) = -\sqrt{3} - \frac{\pi}{6}$.

- **2a** Domain is $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$. The only intercept is (0, 0).
- **2b** Horizontal asymptote: y = 1. Vertical asymptotes: $x = \pm 2$.
- **2c** Since

$$f'(x) = -\frac{8x}{(x^2 - 4)^2},$$

the only critical point of f is x = 0.

2d For x in the domain of f, we have f'(x) > 0 for x < 0, and f'(x) < 0 for x > 0. By the Monotonicity Test f is increasing on $(-\infty, -2) \cup (-2, 0)$, and decreasing on $(0, 2) \cup (2, \infty)$. By the First Derivative Test f has a local maximum at (0, 0).

2e Here

$$f''(x) = \frac{24x^2 + 32}{(x^2 - 4)^3},$$

so f''(x) < 0 for -2 < x < 2, and f''(x) > 0 for x < -2 and x > 2. Therefore, by the Concavity Test, f is concave down on (-2, 2), and concave up on $(-\infty, -2)$ and $(2, \infty)$. There are no inflection points.

3 A point on y = -2x has the form (x, -2x), and this point's distance from (-20, 0) is

$$d(x) = \sqrt{(x+20)^2 + (-2x)^2} = \sqrt{5x^2 + 40x + 400}.$$

We can minimize $d^2(x)$ a bit easier than d(x) itself. Define

$$D(x) = d^2(x) = 5x^2 + 40x + 400.$$

Then D'(x) = 0 implies 10x + 40 = 0, giving x = -4. The point on y = -2x closest to (-20, 0) is therefore (-4, 8). Distance between these points is $\sqrt{16^2 + 8^2} = 8\sqrt{5}$.

4 Say there are two fences of length x, and four fences of length y (which includes the two interior fences). We have 2x + 4y = 400, or x = 200 - 2y. The area of the enclosed field is $A(y) = xy = -2y^2 + 200y$. Now, A'(y) = -4y + 200, so A'(y) = 0 implies y = 50. This corresponds to a maximum value for A(y). With y = 50 we have x = 100, so the dimensions of the rectangle with maximum area is 100 ft \times 50 ft, and the area is 5000 ft².

5 Let $f(x) = \sqrt[3]{x}$, so $f'(x) = \frac{1}{3}x^{-2/3}$. Since $\sqrt[3]{8} = 2$, and 8 is near 7, we find a linearization for f at x = 8. This is

$$L(x) = f'(8)(x-8) + f(8) = \frac{x}{12} + \frac{4}{3}.$$

Now,

$$\sqrt[3]{7} = f(7) \approx L(7) = \frac{7}{12} + \frac{4}{3} = \frac{23}{12} = 1.91\overline{6}.$$

6 Let $f(x) = x^5 + 10x + 3$, so equation becomes f(x) = 0. Since f(-1) = -8 < 0 and f(0) = 3 > 0, by the Intermediate Value Theorem there exists some $c \in (-1,0)$ such that f(c) = 0, and this value would have to be a real root for the equation. That is, the equation is sure to have at least one real root.

Suppose there exist two real roots $c_1 < c_2$ for the equation, so $f(c_1) = f(c_2) = 0$. Since the polynomial function f is everywhere continuous and differentiable, by Rolle's Theorem we conclude there must be some $r \in (c_1, c_2)$ for which f'(r) = 0. But this implies that $5r^4 + 10 = 0$, or $r^4 = -2$, so that r cannot be a real number, and thus it cannot lie in the interval (c_1, c_2) . Having arrived at a contradiction, we conclude that the equation cannot have two real roots, and therefore must have exactly one real root.

7a We have

$$\lim_{x \to 0} \frac{\sin ax}{\sin bx} \stackrel{\text{\tiny LR}}{=} \lim_{x \to 0} \frac{a \cos ax}{b \cos bx} = \frac{a \cos 0}{b \cos 0} = \frac{a}{b}.$$

7b Get a common denominator and use L'Hôpital's Rule twice:

$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\sin x} \right) = \lim_{x \to 0} \frac{\sin x - x}{x \sin x} \stackrel{\text{LR}}{=} \lim_{x \to 0} \frac{\cos x - 1}{x \cos x + \sin x}$$
$$\stackrel{\text{LR}}{=} \lim_{x \to 0} \frac{\sin x}{x \sin x - 2 \cos x} = \frac{0}{0 - 2} = 0.$$

8a
$$\int \left(\frac{5}{t^2} + 4t^2\right) dt = \int (5t^{-2} + 4t^2) dt = -\frac{5}{t} + \frac{4}{3}t^3 + C.$$

8b
$$\int (\cos 2x - \csc^2 8x) \, dx = \frac{1}{2} \sin 2x + \frac{1}{8} \cot 8x + C.$$