Math 140 Exam \#1 Key (Spring 2022)

1 We have

$$
\lim _{x \rightarrow-1} F(x)=3, \quad \lim _{x \rightarrow-2} F(x)=1, \quad \lim _{x \rightarrow 1^{-}} F(x)=2, \quad \lim _{x \rightarrow 1^{+}} F(x)=4, \quad \lim _{x \rightarrow 3^{+}} F(x)=\text { DNE. }
$$

2a Simply reduce the fraction first:

$$
\lim _{x \rightarrow-b} \frac{(x+b)^{6}+(x+b)^{9}}{4}=0
$$

2b Multiply top and bottom of fraction by $5(5+h)$:

$$
\lim _{h \rightarrow 0} \frac{5-(5+h)}{5 h(5+h}=\lim _{h \rightarrow 0} \frac{-1}{5(5+h)}=-\frac{1}{25} .
$$

2c Factor the bottom (or multiply top and bottom by $\sqrt{x}+9$):

$$
\lim _{x \rightarrow 81} \frac{\sqrt{x}-9}{(\sqrt{x}-9)(\sqrt{x}+9)}=\lim _{x \rightarrow 81} \frac{1}{\sqrt{x}+9}=\frac{1}{\sqrt{81}+9}=\frac{1}{18}
$$

2d Factor the bottom:

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{(\cos x-2)(\cos x-1)}=\lim _{x \rightarrow 0} \frac{-1}{\cos x-2}=\frac{-1}{\cos 0-2}=1 .
$$

3 Since

$$
\lim _{x \rightarrow-3^{-}} G(x)=\lim _{x \rightarrow-3^{-}}(3 x+2 k)=-9+2 k \quad \text { and } \quad \lim _{x \rightarrow-3^{+}} G(x)=\lim _{x \rightarrow-3^{+}}(x+9)=6,
$$

the limit $\lim _{x \rightarrow-3} G(x)$ can only exist if $-9+2 k=6$, which only happens if $k=\frac{15}{2}$. Then $\lim _{x \rightarrow-3} G(x)=6$.

4 All equal $-\infty$.

5 Since

$$
f(x)=\frac{x+1}{x(x-2)^{2}},
$$

f has vertical asymptotes $x=0$ and $x=2$. We find that

$$
\lim _{x \rightarrow 0^{-}} f(x)=-\infty, \quad \lim _{x \rightarrow 0^{+}} f(x)=+\infty, \quad \lim _{x \rightarrow 2^{-}} f(x)=+\infty, \quad \lim _{x \rightarrow 2^{+}} f(x)=+\infty,
$$

so $\lim _{x \rightarrow 2} f(x)=+\infty$ and $\lim _{x \rightarrow 0} f(x)$ does not exist.

6 Divide top and bottom by x^{2}, then evaluate to get $-\frac{4}{7}$.

7a In general,

$$
f(x)=\frac{4 x^{3}+1}{2 x^{3}+\sqrt{16 x^{6}+1}}=\frac{4 x^{3}+1}{2 x^{3}+|x|^{3} \sqrt{16+x^{-6}}}
$$

so

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{4 x^{3}+1}{2 x^{3}+x^{3} \sqrt{16+x^{-6}}}=\lim _{x \rightarrow \infty} \frac{4+x^{-3}}{2+\sqrt{16+x^{-6}}}=\frac{4}{2+\sqrt{16}}=\frac{2}{3},
$$

and

$$
\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{4 x^{3}+1}{2 x^{3}-x^{3} \sqrt{16+x^{-6}}}=\lim _{x \rightarrow-\infty} \frac{4+x^{-3}}{2-\sqrt{16+x^{-6}}}=\frac{4}{2-\sqrt{16}}=-2 .
$$

7b Horizontal asymptotes are $y=\frac{2}{3}$ and $y=-2$.

8 Continuity from the left at -1 requires that $\lim _{x \rightarrow-1^{-}} h(x)=h(-1)$. Since

$$
\lim _{x \rightarrow-1^{-}} h(x)=\lim _{x \rightarrow-1^{-}}\left(2 x^{2}+x\right)=1,
$$

and $h(-1)=s$, we set $s=1$ to get continuity from the left at -1 .
Continuity from the right at -1 requires $\lim _{x \rightarrow-1^{+}} h(x)=h(-1)$. Since

$$
\lim _{x \rightarrow-1^{+}} h(x)=\lim _{x \rightarrow-1^{+}}(4-3 x)=7
$$

and $h(-1)=s$, we set $s=7$ to get continuity from the right at -1 .

9a By definition,
$f^{\prime}(4)=\lim _{x \rightarrow 4} \frac{f(x)-f(4)}{x-4}=\lim _{x \rightarrow 4} \frac{\sqrt{x-3}-1}{x-4}=\lim _{x \rightarrow 4} \frac{x-4}{(x-4)(\sqrt{x-3}+1)}=\lim _{x \rightarrow 4} \frac{1}{\sqrt{x-3}+1}=\frac{1}{2}$.

9b Slope of the tangent line at $(4,1)$ is $f^{\prime}(4)=\frac{1}{2}$, so line is $y=\frac{1}{2} x-1$.

