Math 140 Exam \#2 Key (Spring 2021)

1a $h^{\prime}(t)=t^{-2 / 3}-24 t^{2}+9$.

1b Quotient Rule:

$$
g^{\prime}(x)=\frac{\left(x^{2}-4\right)\left(3 x^{2}\right)-\left(x^{3}+1\right)(2 x)}{\left(x^{2}-4\right)^{2}}=\frac{x^{4}-12 x^{2}-2 x}{\left(x^{2}-4\right)^{2}}
$$

1c Product Rule:

$$
y^{\prime}=\sin x \sec ^{2} x+\cos x \tan x=\tan x \sec x+\sin x
$$

1d Quotient Rule:

$$
y^{\prime}=\frac{(4+\sin x)(2 \sec x \tan x)-(2 \sec x)(\cos x)}{(4+\sin x)^{2}}=\frac{8 \sec x \tan x+2 \tan ^{2} x-2}{(4+\sin x)^{2}}
$$

2 First we get $f^{\prime}(x)=6 x^{2}-6 x-12$. Setting $f^{\prime}(x)=60$ gives $6 x^{2}-6 x-12=60$, or $x^{2}-x-12=0$, which factors as $(x-4)(x+3)=0$. Solutions are $x=-3,4$. Points on the graph of f with slope 60 are therefore $(-3,-41)$ and $(4,36)$.

3a $\quad y^{\prime}=16\left(4-15 x^{4}\right)\left(4 x-3 x^{5}\right)^{15}$.
3b $\quad y^{\prime}=-\csc ^{2}(\sqrt{x}) \cdot(\sqrt{x})^{\prime}=-\frac{1}{2 \sqrt{x}} \csc ^{2} \sqrt{x}$.

3c Using the Chain Rule:

$$
\begin{aligned}
h^{\prime}(x) & =4 \sin ^{3}(\cos (-8 x)) \cdot \cos (\cos (-8 x)) \cdot(-\sin (-8 x)) \cdot(-8) \\
& =32 \sin ^{3}(\cos (-8 x)) \cos (\cos (-8 x)) \sin (-8 x)
\end{aligned}
$$

4 By the Quotient Rule:

$$
3 x^{2}=\frac{(x-y)\left(1+y^{\prime}\right)-(x+y)\left(1-y^{\prime}\right)}{(x-y)^{2}} \Rightarrow y^{\prime}=\frac{3 x^{2}(x-y)^{2}+2 y}{2 x}
$$

Alternative: rewrite equation as $x^{4}-x^{3} y=x+y$ to avoid having to use the Quotient Rule, if desired. Now differentiate with respect to x :
$4 x^{3}-3 x^{2} y-x^{3} y^{\prime}=1+y^{\prime} \Rightarrow 4 x^{3}-3 x^{2} y-1=x^{3} y^{\prime}+y^{\prime}=\left(x^{3}+1\right) y^{\prime} \Rightarrow y^{\prime}=\frac{4 x^{3}-3 x^{2} y-1}{x^{3}+1}$.

5 Implicit differentiation gives

$$
y^{5 / 2}+\frac{5}{2} x y^{3 / 2} y^{\prime}+\frac{3}{2} x^{1 / 2} y+x^{3 / 2} y^{\prime}=0
$$

and so

$$
y^{\prime}=-\frac{y^{5 / 2}+\frac{3}{2} x^{1 / 2} y}{x^{3 / 2}+\frac{5}{2} x y^{3 / 2}}=-\frac{2 y^{5 / 2}+3 x^{1 / 2} y}{2 x^{3 / 2}+5 x y^{3 / 2}}
$$

At the point $(x, y)=(4,1)$ we have

$$
y^{\prime}=-\frac{2(1)^{5 / 2}+3(4)^{1 / 2}(1)}{2(4)^{3 / 2}+5(4)(1)^{3 / 2}}=-\frac{2+3(2)}{2(8)+5(4)}=-\frac{2}{9}
$$

which is the slope of the tangent line. Equation of tangent line is therefore

$$
y-1=-\frac{2}{9}(x-4) \Rightarrow 2 x+9 y=17 .
$$

6 Letting r be the radius of the plate, we're given that $d r / d t=0.02 \mathrm{~cm} / \mathrm{min}$. The area A of the plate is $A=\pi r^{2}$, and so, differentiating this equation with respect to t (where r and A are implicitly functions of t), we get

$$
\frac{d A}{d t}=2 \pi r \frac{d r}{d t}=0.04 \pi r
$$

Finally, when $r=60 \mathrm{~cm}$, we find the area to be increasing at the rate

$$
\left.\frac{d A}{d t}\right|_{r=60}=0.04 \pi \cdot 60=2.4 \pi \mathrm{~cm}^{2} / \mathrm{min} \approx 7.54 \mathrm{~cm}^{2} / \mathrm{min} .
$$

7 Let 0 be the time when the bicycle is directly under the balloon. If the bicycle is at coordinates $(0,0)$, then the balloon is at $(0,65)$. At time $t>0$ (in seconds) the bicycle will be at coordinates $(17 t, 0)$ if we take it to be moving in the direction of the positive x-axis, while the balloon will be at coordinates $(0, t+65)$. The distance between the bicycle and balloon at time t is therefore

$$
D=\sqrt{(17 t)^{2}+(t+65)^{2}}=\left(290 t^{2}+130 t+4225\right)^{1 / 2}
$$

The rate of change of the distance between bicycle and balloon is $d D / d t$. Differentiating our equation above with respect to t yields

$$
\frac{d D}{d t}=\frac{290 t+65}{\sqrt{290 t^{2}+130 t+4225}}
$$

and so

$$
\left.\frac{d D}{d t}\right|_{t=4}=\frac{290(4)+65}{\sqrt{290 \cdot 4^{2}+130 \cdot 4+4225}}=\frac{1225}{\sqrt{9385}} \approx 12.6 \mathrm{ft} / \mathrm{s} .
$$

Another approach is to set up a right triangle with vertical side length y (the height of the balloon), horizontal side length x (the distance the bicycle has traveled to, say, the right of
the vertical line the balloon is traveling up). Then $d y / d t=1 \mathrm{ft} / \mathrm{s}$ and $d x / d t=17 \mathrm{ft} / \mathrm{s}$, and $D=\sqrt{x^{2}+y^{2}}$. Now,

$$
\frac{d D}{d t}=\frac{x \frac{d x}{d t}+y \frac{d y}{d t}}{\sqrt{x^{2}+y^{2}}}=\frac{17 x+y}{\sqrt{x^{2}+y^{2}}}
$$

and since we can set $x=17(4)=68 \mathrm{ft}$ and $y=65+4=69 \mathrm{ft}$ when $t=4$ seconds, we get

$$
\left.\frac{d D}{d t}\right|_{t=4}=\frac{17(68)+69}{\sqrt{68^{2}+69^{2}}}=\frac{1225}{\sqrt{9385}} \approx 12.6 \mathrm{ft} / \mathrm{s}
$$

