## Math 140 Exam \#3 Key (Spring 2019)

1a Show your work, but the answer is $-\frac{4}{3}$.

1b Multiply numerator and denominator by $\sqrt{x^{2}+a x}+\sqrt{x^{2}+b x}$ and simplify to get

$$
\lim _{x \rightarrow \infty} \frac{a x-b x}{\sqrt{x^{2}+a x}+\sqrt{x^{2}+b x}}=\lim _{x \rightarrow \infty} \frac{a-b}{\sqrt{1+a / x}+\sqrt{1+b / x}}=\frac{a-b}{2} .
$$

2a Domain is $(-\infty, 1) \cup(1,2) \cup(2, \infty)$, and the only intercept is $(0,0)$.
2b Vertical asymptote: $x=2$. Horizontal asymptote: $y=-1$. There is a hole in the graph at $(1,1)$.

2c Since $f^{\prime}(x)=2 /(x-2)^{2}$, there are no critical points.

2d Since $f^{\prime}(x)>0$ for all $x \in \operatorname{Dom}(f)$, we conclude that $f$ is increasing on its domain.

2e $f^{\prime \prime}(x)=-4 /(x-2)^{3}$, so $f^{\prime \prime}>0$ on $(-\infty, 1) \cup(1,2)$ and $f^{\prime \prime}<0$ on $(2, \infty)$. Thus $f$ is concave up on $(-\infty, 1)$ and $(1,2)$, and concave down on $(2, \infty)$. There are no inflection points.

3 The square of the distance between $(x, \sqrt{x})$ and $(3,0)$ is

$$
D(x)=x^{2}-5 x+9
$$

and since

$$
D^{\prime}(x)=0 \Rightarrow 2 x-5=0 \Rightarrow x=\frac{5}{2}
$$

we conclude that the point $(5 / 2, \sqrt{5 / 2})$ is closest.
4 For minimum length we must assume the ladder touches the top of the fence. If the base of the ladder is $x$ away from the fence then the ladder forms the hypotenuse of a right triangle with length $\ell(x)$, while the base of the triangle has length $x+4$. The height of the triangle is $y+8$, where $y$ is the vertical distance from the top of the fence to the top of the ladder.


By similar triangles we have

$$
\frac{y+8}{x+4}=\frac{y}{4}
$$

and hence $y=32 / x$. Now, letting $L(x)=\ell^{2}(x)$, the Pythagorean Theorem gives

$$
L(x)=(x+4)^{2}+(y+8)^{2}=(x+4)^{2}+\left(\frac{32}{x}+8\right)^{2}
$$

Now,

$$
L^{\prime}(x)=2 x+8-\frac{2048}{x^{3}}-\frac{512}{x^{2}}
$$

so $L^{\prime}(x)=0$ if and only if

$$
2 x^{4}+8 x^{3}-512 x-2048=2 x^{3}(x+4)-512(x+4)=\left(2 x^{3}-512\right)(x+4)=0
$$

which yields solutions $x=-4$ (not physically interesting) and $x=4 \sqrt[3]{4}$. The minimum length is $\ell(4 \sqrt[3]{4})$.

5 For $C$ arbitrary: $\frac{3}{5} x^{5 / 3}+\frac{2}{5} x^{5 / 2}+C$.
$6 f^{\prime}(\theta)=-\cos \theta+\sin \theta+C$ implies $f^{\prime}(0)=-1+C$, so with $f^{\prime}(0)=4$ we must have $C=5$. Now,

$$
f^{\prime}(\theta)=-\cos \theta+\sin \theta+5 \Rightarrow f(\theta)=-\sin \theta-\cos \theta+5 \theta+D
$$

so $3=f(0)=-1+D$, and thus $D=4$. Therefore

$$
f(\theta)=-\sin \theta-\cos \theta+5 \theta+4
$$

7 Using right endpoints,

$$
\begin{aligned}
\int_{-2}^{0} f(x) d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(-2+\frac{2 i}{n}\right) \frac{2}{n} \\
& =\lim _{n \rightarrow \infty} \frac{2}{n} \sum_{i=1}^{n}\left[\left(-2+\frac{2 i}{n}\right)^{2}+\left(-2+\frac{2 i}{n}\right)\right] \\
& =\lim _{n \rightarrow \infty} \frac{2}{n} \sum_{i=1}^{n}\left(2-\frac{6}{n} i+\frac{4}{n^{2}} i^{2}\right) \\
& =\lim _{n \rightarrow \infty} \frac{2}{n}\left[2 n-\frac{6}{n} \cdot \frac{n(n+1)}{2}+\frac{4}{n^{2}} \cdot \frac{n(n+1)(2 n+1)}{6}\right] \\
& =\lim _{n \rightarrow \infty} \frac{2 n^{2}-6 n+4}{3 n^{2}}=\frac{2}{3} .
\end{aligned}
$$

8 The integral represents the area of a rectangle, plus a quarter of the area of a circle of radius 3 with center ( 0,1 ). Pretty picture below.


Thus

$$
\int_{-3}^{0}\left(1+\sqrt{9-x^{2}}\right) d x=(1)(3)+\frac{1}{4}\left(\pi \cdot 3^{2}\right)=\frac{9}{4} \pi+3 .
$$

9 By the Fundamental Theorem of Calculus,

$$
y^{\prime}=-\sqrt{x} \tan \sqrt{x} \cdot \frac{d}{d x} \sqrt{x}=-\sqrt{x} \tan \sqrt{x} \cdot \frac{1}{2 \sqrt{x}}=-\frac{1}{2} \tan \sqrt{x}
$$

10a We obtain $\left[v-2 v^{4}+2 v^{8}\right]_{0}^{1}=1$.
10b We have $[-\csc t]_{\pi / 6}^{\pi / 2}=2-1=1$.

