Math 140 Exam \#2 Key (Spring 2019)

1a $\quad s^{\prime}(t)=\frac{3}{2}(2 t-\sin t)^{1 / 2}(2-\cos t)$

1b $f^{\prime}(\theta)=-\sin (\sec (\tan \theta)) \cdot \sec (\tan \theta) \tan (\tan \theta) \cdot \sec ^{2} \theta$
2 The given line $y=-3 x+\frac{1}{2}$ has slope -3 , and so we seek a tangent line with slope $\frac{1}{3}$. This means finding x such that $y^{\prime}=\frac{1}{3}$; that is,

$$
\frac{2}{\sqrt{1+4 x}}=\frac{1}{3}
$$

Solving, we get $x=\frac{35}{4}$, and so the point is $\left(\frac{35}{4}, 6\right)$.
3 Since $-\sin (x y) \cdot\left(x y^{\prime}+y\right)=(\cos y) y^{\prime}$, we have

$$
y^{\prime}=-\frac{y \sin (x y)}{\cos y+x \sin (x y)}
$$

4 From $4 y^{3} y^{\prime}-8 y y^{\prime}=4 x^{3}-10 x$ we get

$$
y^{\prime}=\frac{2 x^{3}-5 x}{2 y^{3}-4 y}
$$

and so $y^{\prime}=0$ when $(x, y)=(0,-2)$. The tangent line is the horizontal line $y=-2$.
5a $h(t)$ is maximal at t for which $h^{\prime}(t)=0$. Since $h^{\prime}(t)=0$ implies $80-32 t=0$, we find $h(t)$ is maximal when $t=\frac{5}{2}$, and the maximum height is $h(5 / 2)=100$ feet.

5b From $h(t)=96$ we find $t=2,3$. When $t=3$ the ball is on its way down, and the velocity is $h^{\prime}(3)=-16 \mathrm{ft} / \mathrm{s}$.

5c From $h(t)=0$ we find $t=0,5$, and so the ball hits the ground when $t=5$. Velocity is $h^{\prime}(5)=-80 \mathrm{ft} / \mathrm{s}$.

6 From $A=\ell w$ we have

$$
\frac{d A}{d t}=\ell \frac{d w}{d t}+w \frac{d \ell}{d t}=3 \ell+8 w
$$

and so when $\ell=20 \mathrm{~cm}$ and $w=10 \mathrm{~cm}$ we find that $d A / d t=3(20)+8(10)=140 \mathrm{~cm}^{2} / \mathrm{s}$
7 If h is the height of the conical volume of water, then the radius of the volume of water is $r=h / 3$. The volume is thus

$$
V=\frac{1}{3} \pi r^{2} h=\frac{\pi}{3}\left(\frac{h}{3}\right)^{2} h=\frac{\pi}{27} h^{3}
$$

Then the volume of water is changing at a rate of

$$
\frac{d V}{d t}=\frac{\pi}{9} h^{2} \frac{d h}{d t}
$$

On the other hand, if c is the constant rate at which water is being pumped in, then $d V / d t=$ $c-10,000$, and so

$$
c=10,000+\frac{\pi}{9} h^{2} \frac{d h}{d t}
$$

We're given that $d h / d t=20 \mathrm{~cm} /$ min when $h=200 \mathrm{~cm}$, so

$$
c=10,000+\frac{\pi}{9}(200)^{2}(20) \approx 289,253 \mathrm{~cm}^{3} / \mathrm{min}
$$

8 Let $f(x)=\sqrt[3]{x}$, so $f^{\prime}(1000)=\frac{1}{3}(1000)^{-2 / 3}=\frac{1}{300}$. The tangent line to $f(x)=\sqrt[3]{x}$ at $(1000,10)$ is thus given by

$$
L(x)=\frac{1}{300} x+\frac{20}{3} .
$$

Now,

$$
\sqrt[3]{1003}=f(1003) \approx L(1003)=\frac{1}{300}(1003)+\frac{20}{3}=10.01
$$

9 Let $f^{\prime}(x)=0$ to get $x^{3}-x^{2}-2=0$, which has solutions $x=-1,0,2$. All these critical points of f lie in $[-2,3]$. We evaluate f at the critical points as well as the endpoints:

$$
f(-2)=33, \quad f(-1)=-4, \quad f(0)=1, \quad f(2)=-31, \quad f(3)=28
$$

By the Closed Interval Method we conclude that $f(2)=-31$ is the absolute minimum value of f on $[-2,3]$, and $f(-2)=33$ is the absolute maximum value.

10 Let $f(x)=2 x-1-\sin x$, so the job is to show that f has exactly one real zero. Since $f(0)=-1<0$ and $f(\pi)=2 \pi-1>0$, the Intermediate Value Theorem implies there exists some $c \in(0, \pi)$ such that $f(c)=0$, and so f has at least one real zero. Suppose f has two real zeros x_{1} and x_{2}, so $f\left(x_{1}\right)=f\left(x_{2}\right)=0$. By Rolle's Theorem (or the Mean Value Theorem) there exists some c between x_{1} and x_{2} such that $f^{\prime}(c)=0$. Since $f^{\prime}(x)=2-\cos x$, it follows that $2-\cos c=0$, or $\cos c=2$. However, it is known that $-1 \leq \cos x \leq 1$ for all real x, so c cannot be real, and hence c cannot be between x_{1} and x_{2}. This is a contradiction, and therefore we conclude that f cannot have two real zeros. Therefore f has exactly one real root.

11 Since $f^{\prime}(x) \geq 2$ for all $x \in[1,4]$, the function f is continuous on $[1,4]$ and $(1,4)$ as required by the Mean Value Theorem, and we can use the theorem to conclude there exists $1<c<4$ such that

$$
f^{\prime}(c)=\frac{f(4)-f(1)}{4-1}=\frac{f(4)-10}{3} .
$$

But $f^{\prime}(c) \geq 2$ also, so that

$$
\frac{f(4)-10}{3} \geq 2
$$

and hence $f(4) \geq 16$. That is, 16 is the smallest that $f(4)$ can possibly be.

