Math 140 Exam \#1 Key (Spring 2019)

1a $\lim _{x \rightarrow 1^{-}} h(x)=2$
1b $\lim _{x \rightarrow 1^{+}} h(x)=4$
1c $\lim _{x \rightarrow 1} h(x)=$ DNE
1d $\lim _{x \rightarrow 3^{-}} h(x)=1$

1e $\lim _{x \rightarrow-2} h(x)=1$
2a $\lim _{x \rightarrow-1} \frac{2 x^{2}+3 x+1}{x^{2}-2 x-3}=\lim _{x \rightarrow-1} \frac{(2 x+1)(x+1)}{(x+1)(x-3)}=\lim _{x \rightarrow-1} \frac{2 x+1}{x-3}=\frac{2(-1)+1}{-1-3}=\frac{1}{4}$.
2b $\lim _{t \rightarrow 0} \frac{\sqrt{1+t}-\sqrt{1-t}}{t} \cdot \frac{\sqrt{1+t}+\sqrt{1-t}}{\sqrt{1+t}+\sqrt{1-t}}=\lim _{t \rightarrow 0} \frac{2}{\sqrt{1+t}+\sqrt{1-t}}=\frac{2}{\sqrt{1}+\sqrt{1}}=1$.
$3 \lim _{t \rightarrow 2^{-}} G(t)=\lim _{t \rightarrow 2^{-}}(4-t / 2)=3$ and $\lim _{t \rightarrow 2^{+}} G(t)=\lim _{t \rightarrow 2^{+}} \sqrt{t+c}=\sqrt{2+c}$, so the limit can only exist if $3=\sqrt{2+c}$, which requires that $c=7$.

4 Let $\epsilon>0$. Choose $\delta=\min \{1,2 \epsilon\}$. Suppose x is such that $0<|x-2|<\delta$, so both $|x-2|<1$ and $|x-2|<2 \epsilon$ hold. From $|x-2|<1$ we find that $x>1$, and so $0<1 /|x|<1$ in particular. Now,

$$
\left|\frac{1}{x}-\frac{1}{2}\right|=\left|\frac{2-x}{2 x}\right|=\frac{|x-2|}{2|x|}=\frac{1}{|x|} \cdot \frac{|x-2|}{2}<1 \cdot \frac{2 \epsilon}{2}=\epsilon,
$$

and the proof is done.

5 Continuity from the left at 1 requires that $\lim _{x \rightarrow 1^{-}} g(x)=g(1)$. Since

$$
\lim _{x \rightarrow 1^{-}} g(x)=\lim _{x \rightarrow 1^{-}}\left(x^{2}+x\right)=1^{2}+1=2
$$

and $g(1)=a$, we set $a=2$ to secure continuity from the left at 1 .
Continuity from the right at 1 requires that $\lim _{x \rightarrow 1^{+}} g(x)=g(1)$. Since

$$
\lim _{x \rightarrow 1^{+}} g(x)=\lim _{x \rightarrow 1^{+}}(3 x+5)=3(1)+5=8
$$

and $g(1)=a$, we set $a=8$ to secure continuity from the right at 1 .
6 Since $f(0)=0<1000$ and $f(100)=10,000+10 \sin 100>1000$, and f is continuous on $[0,100]$, the Intermediate Value Theorem implies there exists some $c \in(0,100)$ such that $f(c)=1000$.

7 By definition,

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\left[2.5(x+h)^{2}+6(x+h)\right]-\left(2.5 x^{2}+6 x\right)}{h}=\lim _{h \rightarrow 0}(5 x+2.5 h+6)=5 x+6 .
$$

8 By the definition of derivative,

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt[3]{h}}{h}=\lim _{h \rightarrow 0} \frac{1}{h^{2 / 3}}=\infty
$$

and so the derivative does not exist.
9a $\quad f^{\prime}(t)=\frac{1}{2 \sqrt{t}}+t^{-2}$.
9b $\quad h^{\prime}(x)=\frac{(3-4 x)(3)-(1+3 t)(-4)}{(3-4 x)^{2}}=\frac{13}{(3-4 x)^{2}}$.
9c $y^{\prime}=\sec ^{3} \theta+\sec ^{2} \theta \tan \theta$.
10 Set $f^{\prime}(x)=0$ to get $3 x^{2}+6 x+1=0$, and solve to get $x=\frac{-3 \pm \sqrt{6}}{3}$.
11 Since $y^{\prime}=\cos x-(1+x) \sin x$, the slope of the line is $y^{\prime}(0)=\cos 0-\sin 0=1$. The line contains the point $(0,1)$, and so the equation of the line is $y=x+1$.

12 Using the result $\lim _{t \rightarrow 0} \frac{\sin t}{t}=1$, we have

$$
\lim _{t \rightarrow 0}\left(\frac{6 \sin 6 t}{6 t} \cdot \frac{2 t}{2 \sin 2 t} \cdot \frac{1}{\cos 6 t}\right)=6 \lim _{t \rightarrow 0} \frac{\sin 6 t}{6 t} \cdot \frac{1}{2} \lim _{t \rightarrow 0} \frac{2 t}{\sin 2 t} \cdot \lim _{t \rightarrow 0} \frac{1}{\cos 6 t}=6 \cdot \frac{1}{2} \cdot 1=3 .
$$

