1 First,

$$
u^{\prime}(t)=\frac{-\sin ^{2} t+\cos ^{2} t-\sin t}{2}=\frac{(2 \sin t-1)(\sin t+1)}{2}
$$

so $u^{\prime}(t)=0$ if and only if $t=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{3 \pi}{2}$. These are the critical points in $(0,2 \pi)$, and so we evaluate

$$
u(0)=0, \quad u\left(\frac{\pi}{6}\right)=\frac{\sqrt{3}-2}{8}, \quad u\left(\frac{5 \pi}{6}\right)=\frac{-\sqrt{3}-2}{8}, \quad u\left(\frac{3 \pi}{2}\right)=\frac{1}{2}, \quad u(2 \pi)=0
$$

The absolute minimum is thus $u\left(\frac{5 \pi}{6}\right)=\frac{-\sqrt{3}-2}{8}$, and the absolute maximum is $u\left(\frac{3 \pi}{2}\right)=\frac{1}{2}$.

2 Let $f(x)=x^{3}-7 x^{2}+25 x+8$, so c is a solution to the equation if and only if $f(c)=0$. Since f is everywhere continuous, $f(-1)<0$, and $f(0)>0$, the Intermediate Value Theorem implies there exists some $c \in(-1,0)$ such that $f(c)=0$, and hence c is a real solution to the equation. That is, the equation has at least one real solution.

Suppose the equation has more than one real solution. Then there are two real solutions c_{1} and c_{2}, and we can assume $c_{1}<c_{2}$. Now, $f\left(c_{1}\right)=f\left(c_{2}\right)=0$, and since f is everywhere differentiable Rolle's Theorem implies there exists some $r \in\left(c_{1}, c_{2}\right)$ such that $f^{\prime}(r)=0$, or equivalently $3 r^{2}-14 r+25=0$. But with the quadratic formula we find that

$$
r=\frac{14 \pm \sqrt{14^{2}-4(3)(25)}}{2(3)}=\frac{7}{3} \pm \frac{\sqrt{26}}{3} i
$$

and so $r \notin\left(c_{1}, c_{2}\right)$. As this is a contradiction, we conclude that the equation cannot have more than one real solution, and therefore it has exactly one real solution.

3a Domain is \mathbb{R}, the only intercept is (0,0), and the only asymptote is the horizontal asymptote $y=10$.

3b $f^{\prime}(x)=\frac{60 x}{\left(x^{2}+3\right)^{2}}$.

3c $f^{\prime}(x)>0$ for $x>0$, and $f^{\prime}(x)<0$ for $x<0$. Thus f is decreasing on $(-\infty, 0)$ and increasing on $(0, \infty)$ by the Monotonicity Test, and therefore f has a local minimum at $(0,0)$ by the First Derivative Test.

3d $f^{\prime \prime}(x)=\frac{180(1-x)(1+x)}{\left(x^{2}+3\right)^{3}}$

3e We find $f^{\prime \prime}<0$ on $(-\infty,-1)$ and $(1, \infty)$, while $f^{\prime \prime}>0$ on $(-1,1)$. Therefore f is concave down on $(-\infty,-1)$ and $(1, \infty)$, and concave up on $(-1,1)$. Inflection points are therefore $(\pm 1, f(\pm 1))=\left(\pm 1, \frac{5}{2}\right)$.

4 Find x so that the distance from $(x, 4 x-6)$ to $(0,0)$ is minimal. The square of the distance could be minimized instead and is easier to differentiate:

$$
D(x)=x^{2}+(4 x-6)^{2} \Rightarrow D^{\prime}(x)=34 x-48
$$

The only x for which $D(x)=0$ is $x=\frac{24}{17}$. This is the x-coordinate of the closest point, which has full coordinates $\left(\frac{24}{17},-\frac{6}{17}\right)$.

5 With r the radius of the base of the cone, and h the cone's height, we find that h, r, and 5 are the lengths of the sides of a right triangle such that $r^{2}+h^{2}=5^{2}$, or $r^{2}=25-h^{2}$. Now from $V=\frac{\pi}{3} r^{2} h$ we obtain a function of h alone:

$$
V(h)=\frac{\pi}{3}\left(25-h^{2}\right) h .
$$

Hence $V^{\prime}(h)=\frac{\pi}{3}\left(25-3 h^{2}\right)$, so that $V^{\prime}(h)=0$ if and only if $h=\frac{5}{\sqrt{3}}=\frac{5 \sqrt{3}}{3}$. This is the value of h that maximizes the volume of the cone, and the corresponding r value is $r=\sqrt{25-h^{2}}=$ $5 \sqrt{2 / 3}=\frac{5 \sqrt{6}}{3}$.

6 Let $f(x)=\sqrt[3]{x}$, so $f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}$. We linearize f at $x=64$: the point of tangency is $(64, \sqrt[3]{64})=(64,4)$, and the slope of the tangent line is $f^{\prime}(64)=\frac{1}{48}$. From the point-slope formula we find the tangent line to be $y-4=\frac{1}{48}(x-64)$, and therefore the linearization is $L(x)=\frac{1}{48} x+\frac{8}{3}$. Finally,

$$
\sqrt[3]{65}=f(65) \approx L(65)=\frac{65}{48}+\frac{8}{3}=\frac{193}{48} .
$$

7a The limit could be figured by factoring out \sqrt{x} from the numerator and denominator and reducing. But with L'Hôpital's Rule we have

$$
\lim _{x \rightarrow \infty} \frac{3}{x} \csc \frac{5}{x}=\lim _{x \rightarrow \infty} \frac{3 / x}{\sin (5 / x)} \stackrel{\text { LR }}{=} \lim _{x \rightarrow \infty} \frac{-3 / x^{2}}{\left(-5 / x^{2}\right) \cos (5 / x)}=\lim _{x \rightarrow \infty} \frac{3}{5 \cos (5 / x)}=\frac{3}{5} .
$$

7b From the identity $\sin (2 u)=2 \sin u \cos u$ we get $\csc x=\frac{1}{2} \csc (x / 2) \sec (x / 2)$, which will help make things a bit easier:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{(\sin x) \sqrt{1-x}}{\sqrt{x}} & \stackrel{\text { LR }}{=} \lim _{x \rightarrow 0^{+}} \frac{(\cos x) \sqrt{1-x}-(\sin x) \cdot \frac{1}{2}(1-x)^{-1 / 2}}{\frac{1}{2} x^{-1 / 2}} \\
& =\lim _{x \rightarrow 0^{+}} 2 \sqrt{x}\left[(\cos x) \sqrt{1-x}-\frac{\sin x}{2 \sqrt{1-x}}\right] \\
& =2 \sqrt{0}\left[(\cos 0) \sqrt{1-0}-\frac{\sin 0}{2 \sqrt{1-0}}\right]=0 .
\end{aligned}
$$

