1a $s^{\prime}(t)=-20 t^{9}-7-\frac{8}{t^{2}}$.
1b Since $f(x)=x^{1 / 2}\left(x^{2}-1\right)=x^{5 / 2}-x^{1 / 2}$, we have $f^{\prime}(x)=\frac{5}{2} x^{3 / 2}-\frac{1}{2} x^{-1 / 2}$.
1c $g^{\prime}(r)=\frac{(1+\sqrt{r})(2 r)-r^{2}\left(\frac{1}{2 \sqrt{r}}\right)}{(1+\sqrt{r})^{2}}=\frac{2 r+2 r^{3 / 2}-\frac{1}{2} r^{3 / 2}}{(1+\sqrt{r})^{2}}=\frac{4 r+3 r \sqrt{r}}{2(1+\sqrt{r})^{2}}$.
1d $h^{\prime}(\theta)=\theta^{2} \sec \theta \tan \theta+2 \theta \sec \theta-\cos \theta$.
1e $y^{\prime}=\frac{1}{3}\left(1+2 x-x^{5}\right)^{-2 / 3} \cdot\left(2-5 x^{4}\right)$.
1f $y^{\prime}=-8 x \sec ^{2}\left(\cos 4 x^{2}\right) \sin 4 x^{2}$.

2 With the Quotient Rule,

$$
f^{\prime}(x)=\frac{2 x^{2}-10 x+6}{\left(3-x^{2}\right)^{2}} \Rightarrow f^{\prime \prime}(x)=\frac{4 x^{3}-30 x^{2}+36 x-30}{\left(3-x^{2}\right)^{3}}
$$

3 Let $f(x)=x+\sqrt{x}$, and find x such that $f^{\prime}(x)=2$, or $1+\frac{1}{2 \sqrt{x}}=2$, which has solution $x=\frac{1}{4}$. Thus the tangent line has slope 2 and point $\left(\frac{1}{4}, f\left(\frac{1}{4}\right)\right)=\left(\frac{1}{4}, \frac{3}{4}\right)$. Equation for line is thus $y=2 x+\frac{1}{4}$.

4 Implicit differentiation yields

$$
\frac{1}{2}\left(x^{4}+y^{2}\right)^{-1 / 2}\left(4 x^{3}+2 y y^{\prime}\right)=10-3 y^{2} y^{\prime}
$$

where of course y^{\prime} is $d y / d x$. The rest is simply algebra:

$$
\frac{d y}{d x}=\frac{10 \sqrt{x^{4}+y^{2}}-2 x^{3}}{3 y^{2} \sqrt{x^{4}+y^{2}}+y}
$$

5 When $x=2$ equation becomes $2 y^{2}=32$, and so $y= \pm 4$. So there are two relevant points on the curve: $(2, \pm 4)$. Implicit differentiation of the original equation gives

$$
12 x^{2}=2 y y^{\prime}(4-x)-y^{2} \Rightarrow \frac{d y}{d x}=\frac{12 x^{2}+y^{2}}{2 y(4-x)}
$$

At $(2,4): y^{\prime}=\frac{64}{16}=4$, so tangent line is $y=4 x-4$. At $(2,-4): y^{\prime}=\frac{64}{-16}=-4$, so tangent line is $y=-4 x+4$.

6a Set $h^{\prime}(t)=0$ to get $-9.8 t+19.6=0$, and thus $t=2$. At 2 seconds the stone reaches its maximum height, which is $h(2)=44.1 \mathrm{ft}$.

6b Solve $h(t)=0$ to get $t=5$, so the stone hits the ground after 5 seconds, and its velocity is $h^{\prime}(5)=-9.8(5)+19.6=-29.4 \mathrm{ft} / \mathrm{s}$.

7 The snowball loses mass, or volume V, at a rate proportional to its surface area S : $\frac{d V}{d t}=k S$, where k is a constant of proportionality. Now,

$$
\frac{d V}{d t}=k S \Rightarrow \frac{d}{d t}\left(\frac{4}{3} \pi r^{3}\right)=k\left(4 \pi r^{2}\right) \Rightarrow 4 \pi r^{2} \cdot \frac{d r}{d t}=k\left(4 \pi r^{2}\right)
$$

and finally

$$
\frac{d r}{d t}=k
$$

8 Let x be the kite's distance to the north from Esther. Let ℓ be the length of string from hand to kite. We have a right triangle with legs length x and 60 and hypotenuse length ℓ. Thus $x^{2}+60^{2}=\ell^{2}$. Now, $d x / d t=8$, so

$$
x^{2}+60^{2}=\ell^{2} \Rightarrow 2 x \frac{d x}{d t}=2 \ell \frac{d \ell}{d t} \Rightarrow \frac{d \ell}{d t}=\frac{8 x}{\ell}=\frac{8}{\ell} \sqrt{\ell^{2}-60^{2}}
$$

Hence when $\ell=130$ we get

$$
\left.\frac{d \ell}{d t}\right|_{\ell=130}=\frac{8}{130} \sqrt{130^{2}-60^{2}} \approx 7.1 \mathrm{ft} / \mathrm{s} .
$$

