Math 140 Exam \#1 Key (Fall 2020)

1a Simply reduce the fraction first:

$$
\lim _{x \rightarrow c} \frac{(x-c)^{2}}{x-c}=\lim _{x \rightarrow c}(x-c)=c-c=0 .
$$

1b Rationalize the numerator and reduce:

$$
\lim _{y \rightarrow 3}\left(\frac{\sqrt{3 y+16}-5}{y-3} \cdot \frac{\sqrt{3 y+16}+5}{\sqrt{3 y+16}+5}\right)=\lim _{y \rightarrow 3} \frac{3}{\sqrt{3 y+16}+5}=\frac{3}{10} .
$$

1c Factor and reduce:

$$
\lim _{\theta \rightarrow \pi / 2} \frac{(\sin \theta-4)(\sin \theta-1)}{(\sin \theta+1)(\sin \theta-1)}=\lim _{\theta \rightarrow \pi / 2} \frac{\sin \theta-4}{\sin \theta+1}=\frac{1-4}{1+1}=-\frac{3}{2} .
$$

1d Combine the fractions:

$$
\lim _{r \rightarrow 2} \frac{r-2}{r(r-2)}=\lim _{r \rightarrow 2} \frac{1}{r}=\frac{1}{2} .
$$

2 Since

$$
\lim _{x \rightarrow-1^{-}} q(x)=\lim _{x \rightarrow-1^{-}}\left(x^{2}-5 x\right)=6 \quad \text { and } \quad \lim _{x \rightarrow-1^{+}} q(x)=\lim _{x \rightarrow-1^{+}}\left(2 \ell x^{3}-7\right)=-2 \ell-7,
$$

the limit $\lim _{x \rightarrow-1} q(x)$ can only exist if $-2 \ell-7=6$, which only happens if $\ell=-\frac{13}{2}$. Then $\lim _{x \rightarrow-1} q(x)=6$.

3 The fraction in the limit, which I'll call $f(t)$, reduces to $\frac{1}{t^{3}(t+2)}$, which helps to determine that

$$
\lim _{t \rightarrow 0} f(t)=\text { DNE }, \quad \lim _{t \rightarrow 2} f(t)=\frac{1}{32}, \quad \lim _{t \rightarrow-2} f(t)=\text { DNE }
$$

4 For $x \rightarrow \infty$ we have $\sqrt{x^{2}}=|x|=x$, and for $x \rightarrow-\infty$ we have $\sqrt{x^{2}}=|x|=-x$. This results in the horizontal asymptotes $y= \pm \frac{1}{3}$:

$$
\lim _{x \rightarrow \infty} U(x)=\lim _{x \rightarrow \infty} \frac{x+1}{x \sqrt{9+1 / x}}=\lim _{x \rightarrow \infty} \frac{1+1 / x}{\sqrt{9+1 / x}}=\frac{1}{\sqrt{9}}=\frac{1}{3} .
$$

and

$$
\lim _{x \rightarrow-\infty} U(x)=\lim _{x \rightarrow-\infty} \frac{x+1}{-x \sqrt{9+1 / x}}=\lim _{x \rightarrow-\infty} \frac{1+1 / x}{-\sqrt{9+1 / x}}=-\frac{1}{\sqrt{9}}=-\frac{1}{3}
$$

5 For $x<0, F(x)=x^{3}+4 x+1$, so F is continuous on $(-\infty, 0)$ since polynomial functions are continuous on their domains. Similarly, for $x>0, F(x)=2 x^{3}$, so F is continuous on $(0, \infty)$ also. However,

$$
\lim _{x \rightarrow 0^{+}} F(x)=\lim _{x \rightarrow 0^{+}} 2 x^{3}=0 \neq 1=F(0)
$$

and

$$
\lim _{x \rightarrow 0^{-}} F(x)=\lim _{x \rightarrow 0^{-}}\left(x^{3}+4 x+1\right)=1=F(0),
$$

so F is continuous from the left at 0 , but not from the right. Therefore F is continuous on $(-\infty, 0]$ and $(0, \infty)$.

6a $f^{\prime}(1)=\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1} \frac{\frac{x-1}{x+2}-0}{x-1}=\lim _{x \rightarrow 1} \frac{1}{x+2}=\frac{1}{3}$.

6b The line has point $(1, f(1))=(1,0)$ and slope $\frac{1}{3}$, so equation is $y=\frac{1}{3} x-\frac{1}{3}$.

7 We have

$$
\begin{aligned}
v^{\prime}(t) & =\lim _{x \rightarrow t} \frac{v(x)-v(t)}{x-t}=\lim _{x \rightarrow t}\left(\frac{\sqrt{2-4 x}-\sqrt{2-4 t}}{x-t} \cdot \frac{\sqrt{2-4 x}+\sqrt{2-4 t}}{\sqrt{2-4 x}+\sqrt{2-4 t}}\right) \\
& =\lim _{x \rightarrow t} \frac{4(t-x)}{(x-t)(\sqrt{2-4 x}+\sqrt{2-4 t})}=-4 \lim _{x \rightarrow t} \frac{1}{\sqrt{2-4 x}+\sqrt{2-4 t}} \\
& =-\frac{2}{\sqrt{2-4 t}} .
\end{aligned}
$$

