MaTH 140 ExaMm #1 KeyY (FALL 2020)

la Simply reduce the fraction first:
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1b Rationalize the numerator and reduce:

. V3y+16 -5 /3y+16+5
lim .
y—3 V3y+16+5

3

3
v 3 F 1645 10

y—3

1c Factor and reduce:
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1d Combine the fractions:
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2 Since
lim g(z) = lim (2> —5z)=6 and lim ¢(x)= lim (20z® —7)=—2(—7,
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the limit lim,_,_; ¢(z) can only exist if —2¢ — 7 = 6, which only happens if / = —2. Then
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3 The fraction in the limit, which I'll call f(t), reduces to m, which helps to determine
that
: : 1 :
g /() = DNE, 1l /(1) = o5, Jim, /(1) = DNE.
4 For z — oo we have Va2 = |z| = z, and for  — —oco we have V22 = |z| = —z. This

results in the horizontal asymptotes y = :I:%:
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5 Forx <0, F(r) = 2%+ 42 + 1, so F is continuous on (—oo,0) since polynomial functions
are continuous on their domains. Similarly, for z > 0, F(z) = 223, so F is continuous on (0, cc)
also. However,

lim F(z) = lim 22° =0# 1= F(0
and

z—0~
so F'is continuous from the left at 0, but not from the right. Therefore F' is continuous on
(—o0, 0] and (0, c0).

lim F(z) = lim (2 + 42 +1) = 1 = F(0),
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6b The line has point (1, f(1)) = (1,0) and slope %, so equation is y = %x — %
7 We have
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