MATH 140 EXAM #3 KEY (FALL 2015)

1 We have $f'(x) = 6x^2 - 30x + 24 = 6(x - 1)(x - 4)$, so f'(x) = 0 when x = 1, 4. These are the critical points. We evaluate:

$$f(0) = 0$$
, $f(1) = 11$, $f(4) = -16$, $f(5) = -5$.

The absolute minimum value of f on [0,5] is f(4) = -16, and the absolute maximum value is f(1) = 11.

- **2a** Domain is $(-\infty, -1/2) \cup (-1/2, \infty)$. There is no x-intercept, but the y-intercept is (0, 12).
- **2b** By long division we have

$$f(x) = \frac{1}{2}x - \frac{1}{4} + \frac{49}{4(2x+1)},$$

and so $y = \frac{1}{2}x - \frac{1}{4}$ is a slant asymptote for f. There is also vertical asymptote $x = -\frac{1}{2}$

2c Since

$$f'(x) = \frac{2(x+4)(x-3)}{(2x+1)^2},$$

critical points of f are x = -4, 3. (Note: $-\frac{1}{2}$ is not a critical point since it is not in the domain of f.)

2d f'(x) > 0 implies (x+4)(x-3) > 0, which occurs for $x \in \text{Dom}(f)$ if x > 3 or x < -4. So f is increasing on $(-\infty, -4)$ and $(3, \infty)$, and decreasing on $(-4, -\frac{1}{2})$ and $(-\frac{1}{2}, 3)$. Therefore f has a local maximum at x = -4, and a local minimum at x = 3.

2e We have $f''(x) = 98(2x+1)^{-3}$, so f''(x) > 0 for $x \in (-\frac{1}{2}, \infty)$, and f''(x) < 0 for $x \in (-\infty, -\frac{1}{2})$. Therefore f is concave up on $(-\frac{1}{2}, \infty)$, and concave down on $(-\infty, -\frac{1}{2})$. There is no inflection point at $-\frac{1}{2}$ since $-\frac{1}{2} \notin \text{Dom}(f)$.

3 The surface area of a box having square base with sides of length x is given by the function $S(x) = 2x^2 + 400/x$. Then $S'(x) = 4x - 400/x^2$, and setting S'(x) = 0 gives $4x^3 - 400 = 0$, whence $x = \sqrt[3]{100}$. The dimensions of the box are therefore $\sqrt[3]{100} \times \sqrt[3]{100} \times \sqrt[3]{100}$.

4 The tangent line to the graph of $V(r) = \frac{4}{3}\pi r^3$ at $(5, V(5)) = (5, \frac{500}{3}\pi)$ is given by the function

$$L(r) = 100\pi r - \frac{1000}{3}\pi$$

For r "near" 5 we have $V(r) \approx L(r)$, so in particular

$$V(5.1) - V(5) \approx L(5.1) - L(5) = 100\pi(5.1) - 100\pi(5) = 10\pi$$

5 By the Mean Value Theorem there exists some $c \in (-2, 14)$ such that

$$f'(c) = \frac{f(14) - f(-2)}{14 - (-2)} = \frac{7 - f(-2)}{16}.$$

Since $f'(c) \le 10$ is required, we must have $7 - f(-2) \le 160$, or $f(-2) \ge -153$.

6a We have

$$\lim_{x \to \pi/2^{-}} \left(\frac{\pi}{2} - x\right) \sec x = \lim_{x \to \pi/2^{-}} \frac{\frac{\pi}{2} - x}{\cos x} = \lim_{x \to \pi/2^{-}} \frac{-1}{-\sin x} = \frac{1}{\sin(\pi/2)} = 1.$$

6b Using L'Hôpital's Rule three times:

$$\lim_{x \to 0} \frac{\tan x - x}{x^3} = \lim_{x \to 0} \frac{\sec^2 x - 1}{3x^2} = \lim_{x \to 0} \frac{2\sec^2 x \tan x}{6x} = \lim_{x \to 0} \frac{2\sec^4 x + 4\tan^2 x \sec^2 x}{6}$$
$$= \frac{2\sec^4(0) + 4\tan^2(0)\sec^2(0)}{6} = \frac{2 \cdot 1^4 + 4 \cdot 0^2 \cdot 1^2}{6} = \frac{1}{3}.$$

7a
$$\int \left(\frac{5}{t^2} + 4t^2\right) dt = \int (5t^{-2} + 4t^2) dt = -\frac{5}{t} + \frac{4}{3}t^3 + C.$$

7b
$$\int (\sin 2y - \cos 6y) dy = -\frac{1}{2}\cos 2y - \frac{1}{6}\sin 6y + C.$$