1. 10 pts . Use the Closed Interval Method to find the absolute extreme values of

$$
u(t)=\frac{\sin t \cos t-\sin t}{2}
$$

on $[0,2 \pi]$.
2. 10 pts. Show that the equation $x^{3}+25 x+8=7 x^{2}$ has exactly one real solution.
3. 5 pts. each Let $f(x)=\frac{10 x^{2}}{x^{2}+3}$.
(a) Find the domain, intercepts, and asymptotes of f.
(b) Find f^{\prime}.
(c) Use the Monotonicity Test to find intervals of increase and decrease, and then use the First Derivative Test to find all local extrema.
(d) Find $f^{\prime \prime}$.
(e) Use the Concavity Test to find intervals of concavity for f, identifying all inflection points.
4. 10 pts. Use optimization to find what point on the line $y=4 x-6$ is closest to the origin.
5. 15 pts . Among all the right circular cones with a slant height of 5 , what are the dimensions (radius and height) that maximize the volume of the cone? The slant height of a cone is the distance from the outer edge of the base to the vertex. (Volume of cone formula is $V=\frac{1}{3} \pi r^{2} h$.)
6. 10 pts. Use linear approximation to approximate the value of $\sqrt[3]{65}$.
7. 10 pts. each Use L'Hôpital's Rule to evaluate each limit.
(a) $\lim _{x \rightarrow \infty} \frac{3}{x} \csc \frac{5}{x}$.
(b) $\lim _{x \rightarrow 0^{+}}(\sin x) \sqrt{\frac{1-x}{x}}$.

