1 Given $\csc \theta = 3$ and $\cot \theta < 0$, find the values of all trigonometric functions of θ .

First, $r/y = \csc \theta = 3/1$ implies we can let r = 3 and y = 1. From $x^2 + y^2 = r^2$ we then obtain $x = \pm \sqrt{8}$. But $\cot \theta < 0$ implies (the terminal side of) θ is in QII or QIV (Q standing for quadrant), while $\csc \theta > 0$ implies θ is in QI or QII. Thus θ must be in QII, where x < 0, and so $x = -\sqrt{8} = -2\sqrt{2}$ must be the case. Finally we get

$$\sin \theta = \frac{1}{3}, \quad \cos \theta = -\frac{2\sqrt{2}}{3}, \quad \tan \theta = -\frac{\sqrt{2}}{4}, \quad \sec \theta = -\frac{3\sqrt{2}}{4}, \quad \cot \theta = -2\sqrt{2}.$$

2 If $f(\theta) = \cos \theta$ and $f(a) = \frac{1}{4}$, what is f(-a) and $f(a) + f(a + 2\pi) + f(a - 6\pi)$?

Since cos is an even function we have

$$f(-a) = \cos(-a) = \cos a = f(a) = \frac{1}{4},$$

and since \cos is periodic with period 2π we have

 $f(a) + f(a + 2\pi) + f(a - 6\pi) = \cos a + \cos(a + 2\pi) + \cos(a - 6\pi) = 3\cos a = 3f(a) = \frac{3}{4}.$

3 Evaluate $\cos^{-1}\left(\cos\frac{15\pi}{7}\right)$ and $\tan(\tan^{-1}10)$ exactly.

 $\cos^{-1}\left(\cos\frac{15\pi}{7}\right) = \theta$ implies $\cos\theta = \cos\frac{15\pi}{7}$ for some $\theta \in [0,\pi]$. Now, $\cos\theta = \cos\frac{15\pi}{7} = \cos(\frac{\pi}{7} + 2\pi) = \cos\frac{\pi}{7},$ and since $\frac{\pi}{7} \in [0, \pi]$, we conclude that $\cos^{-1}\left(\cos\frac{15\pi}{7}\right) = \theta = \frac{\pi}{7}$.

4 Given $f(x) = \cos(x+2) + 1$, $-2 \le x \le \pi - 2$, find f^{-1} , and also find the domain and range of f and f^{-1} .

$$x^{-1}(y) = x = \cos^{-1}(y-1) - 2$$

Let y = f(x), so that $y = \cos(x+2) + 1$, and then solving for x gives $f^{-1}(y) = x = \cos^{-1}(y-1) - 2.$ Also Ran $f^{-1} = \text{Dom } f = [-2, \pi - 2]$ and Ran $f = \text{Dom } f^{-1} = \{y : -1 \le y - 1 \le 1\} = [0, 2].$