Math 125 Quiz \#3 (Spring 2021)

1a Given $f(x)=\frac{3 x-1}{2-x}$, find f^{-1}.
Letting $y=f(x)$, so that $y=\frac{3 x-1}{2-x}$, solve for x to get $x=\frac{2 y+1}{y+3}$, and therefore

$$
f^{-1}(y)=\frac{2 y+1}{y+3}
$$

1b Find the domain and range of f and f^{-1}.
$\operatorname{Ran} f^{-1}=\operatorname{Dom} f=(-\infty, 2) \cup(2, \infty)$ and $\operatorname{Ran} f=\operatorname{Dom} f^{-1}=(-\infty,-3) \cup(-3, \infty)$.

2 Find g^{-1} given that $g(x)=\frac{4 x}{x^{2}+16}, x \geq 4$.
Let $y=g(x)$, so $y=\frac{4 x}{x^{2}+16}$, and manipulate to get $y x^{2}-4 x+16 y=0$. We can solve this for x using the Quadratic Formula:

$$
x=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(y)(16 y)}}{2 y}=\frac{4 \pm \sqrt{16-64 y^{2}}}{2 y}=\frac{2 \pm 2 \sqrt{1-4 y^{2}}}{y}
$$

Given that $x \geq 4$ (that is, the domain of g is taken to be restricted to $[4, \infty)$), we must resolve the \pm into + , and thereby obtain

$$
g^{-1}(y)=\frac{2+2 \sqrt{1-4 y^{2}}}{y}
$$

3 Solve $3^{x^{2}+x}=\sqrt{3}$.
Write as $3^{x^{2}+x}=3^{1 / 2}$, so that $x^{2}+x=\frac{1}{2}$, and hence $2 x^{2}+2 x-1=0$. Then with the Quadratic Formula (or completing the square) we get

$$
x=\frac{-1 \pm \sqrt{3}}{2}
$$

