1 Form a polynomial function f having zeros -2 (multiplicity 1) and -1 (multiplicity 2), with degree 3 and such that f(0) = 6.

Start with $f(x) = c(x+2)(x+1)^2$. Now, 6 = f(0) = 2c, so that c = 3 and we finally obtain $f(x) = 3(x+2)(x+1)^2$.

2 Use synthetic division to find the remainder when $f(x) = x^6 - 16x^4 + x^2 - 16$ is divided by x + 4. Then use relevant theorems to find whether x + 4 is a factor of f(x). What is the other factor?

Divide f(x) by x + 4:

-4	1	0	-16	0	1	0	-16
		-4	16	0	0	-4	16
	1	-4	0	0	1	-4	0

From this we see the remainder of the division is 0. By the Remainder Theorem f(-4) = 0, and so by the Factor Theorem x + 4 is a factor of f(x). The other factor is $x^5 - 4x^4 + x - 4$.

3 Use the Rational Zeros Theorem to list the possible rational zeros of the polynomial function $f(x) = x^4 - x^3 - 6x^2 + 4x + 8$, then completely factor f(x) and find all zeros of f.

Possible rational zeros are $\pm 1, \pm 2, \pm 4, \pm 8$. Testing -1, divide f(x) by x + 1: $\begin{array}{c|c}
-1 & 1 & -1 & -6 & 4 & 8 \\
\hline
& -1 & 2 & 4 & -8 \\
\hline
& 1 & -2 & -4 & 8 & 0 \\
\end{array}$

Thus we find

$$f(x) = (x+1)(x^3 - 2x^2 - 4x + 8)$$

= (x+1)[x²(x-2) - 4(x-2)]
= (x+1)(x-2)(x² - 4)
= (x+1)(x-2)²(x+2).

The zeros of f are -1, -2, and 2 (multiplicity 2).