## Math 125 Quiz \#2 (Spring 2021)

1 Form a polynomial function $f$ having zeros -2 (multiplicity 1 ) and -1 (multiplicity 2 ), with degree 3 and such that $f(0)=6$.

Start with $f(x)=c(x+2)(x+1)^{2}$. Now, $6=f(0)=2 c$, so that $c=3$ and we finally obtain $f(x)=3(x+2)(x+1)^{2}$.

2 Use synthetic division to find the remainder when $f(x)=x^{6}-16 x^{4}+x^{2}-16$ is divided by $x+4$. Then use relevant theorems to find whether $x+4$ is a factor of $f(x)$. What is the other factor?

Divide $f(x)$ by $x+4$ :

$$
\begin{array}{r|rrrrrr|r}
-4 & 1 & 0 & -16 & 0 & 1 & 0 & -16 \\
& -4 & 16 & 0 & 0 & -4 & 16 \\
\hline & & -4 & 0 & 0 & 1 & -4 & 0
\end{array}
$$

From this we see the remainder of the division is 0 . By the Remainder Theorem $f(-4)=0$, and so by the Factor Theorem $x+4$ is a factor of $f(x)$. The other factor is $x^{5}-4 x^{4}+x-4$.

3 Use the Rational Zeros Theorem to list the possible rational zeros of the polynomial function $f(x)=x^{4}-x^{3}-6 x^{2}+4 x+8$, then completely factor $f(x)$ and find all zeros of $f$.

Possible rational zeros are $\pm 1, \pm 2, \pm 4, \pm 8$. Testing -1 , divide $f(x)$ by $x+1$ :

$$
\begin{array}{l|lrrr|r}
-1 & 1 & -1 & -6 & 4 & 8 \\
& & -1 & 2 & 4 & -8 \\
\hline 1 & -2 & -4 & 8 & 0
\end{array}
$$

Thus we find

$$
\begin{aligned}
f(x) & =(x+1)\left(x^{3}-2 x^{2}-4 x+8\right) \\
& =(x+1)\left[x^{2}(x-2)-4(x-2)\right] \\
& =(x+1)(x-2)\left(x^{2}-4\right) \\
& =(x+1)(x-2)^{2}(x+2) .
\end{aligned}
$$

The zeros of $f$ are $-1,-2$, and 2 (multiplicity 2 ).

