Math 125 Quiz \#4 (Fall 2020)

1 Evaluate $\cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)$.
Let $\theta=\cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)$, so $\cos \theta=\cos \frac{7 \pi}{6}$ for some $\theta \in[0, \pi]$. The angle $\frac{7 \pi}{6}$ puts a $30-60-90-$ degree triangle in Quadrant III, which when flipped over the x-axis becomes a similar triangle in Quadrant II with hypotenuse on the terminal side of $\theta=\frac{5 \pi}{6}$, our answer.

2 Evaluate $\sin \left(\sin ^{-1}(-1.5)\right.$.
Undefined, since $\theta=\sin ^{-1}(-1.5)$ implies $\sin \theta=-1.5$, which is impossible.

3 Evaluate $\cot \left(\sin ^{-1}\left(-\frac{1}{2}\right)\right)$.
Let $\theta=\sin ^{-1}\left(-\frac{1}{2}\right)$, so $\sin \theta=-\frac{1}{2}$ for some $\theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, and thus $\theta=-\frac{\pi}{6}$. Then:

$$
\cot \left(\sin ^{-1}\left(-\frac{1}{2}\right)\right)=\cot \left(-\frac{\pi}{6}\right)=-\sqrt{3}
$$

4 Evaluate $\csc \left(\tan ^{-1} \frac{1}{2}\right)$.
Let $\theta=\tan ^{-1}\left(\frac{1}{2}\right)$, so $\tan \theta=\frac{1}{2}$ for $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. This implicates θ in a right triangle in Quadrant I as follows:

From this we can see that $\csc \left(\tan ^{-1} \frac{1}{2}\right)=\csc \theta=\sqrt{5}$.

