1 Form a degree 3 polynomial function with zeros -4, 0, 2.

We may let

$$f(x) = Cx(x+4)(x-2)$$

for any choice of constant $C \neq 0$.

2 Form a polynomial function with zeros -5, -1, 2, 6 and point $(\frac{5}{2}, 15)$ lying on its graph.

We start with

$$f(x) = C(x+5)(x+1)(x-2)(x-6),$$

with constant C chosen so that $f(\frac{5}{2}) = 15$; that is,

$$15 = f(\frac{5}{2}) = C(\frac{5}{2} + 5)(\frac{5}{2} + 1)(\frac{5}{2} - 2)(\frac{5}{2} - 6) = C(\frac{15}{2})(\frac{7}{2})(\frac{1}{2})(-\frac{7}{2}).$$

Spare yourself computational inconvenience by canceling 15 from both sides to get

$$C(\frac{1}{2})(\frac{7}{2})(\frac{1}{2})(-\frac{7}{2}) = 1,$$

and thus $C = -\frac{16}{49}$. Therefore

$$f(x) = -\frac{16}{49}(x+5)(x+1)(x-2)(x-6).$$

3 Solve $2x^3 - 3x^2 - 3x - 5 = 0$.

Let $f(x) = 2x^3 - 3x^2 - 3x - 5$. Possible rational zeros of f are $\pm 1, \pm 5, \pm \frac{5}{2}, \pm \frac{1}{2}$. With some trial-and-error we find that $\frac{5}{2}$ is a zero, and dividing $f(x) \div (x - \frac{5}{2})$ gives the quotient $2x^2 + 2x + 2$. Thus

$$f(x) = (x - \frac{5}{2})(2x^2 + 2x + 2) = (2x - 5)(x^2 + x + 1).$$

The equation to solve, f(x) = 0, now becomes

$$(2x-5)(x^2+x+1) = 0,$$

satisfied if either 2x - 5 = 0 or $x^2 + x + 1 = 0$. The former equation gives $x = \frac{5}{2}$ of course, while the latter can be solved with the quadratic formula to give $x = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$. Solution set is

$$\left\{\frac{5}{2}, \ -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i\right\}.$$