Math 125 Quiz \#2 (FAlL 2020)

1 Form a degree 3 polynomial function with zeros $-4,0,2$.
We may let

$$
f(x)=C x(x+4)(x-2)
$$

for any choice of constant $C \neq 0$.

2 Form a polynomial function with zeros $-5,-1,2,6$ and point $\left(\frac{5}{2}, 15\right)$ lying on its graph.
We start with

$$
f(x)=C(x+5)(x+1)(x-2)(x-6),
$$

with constant C chosen so that $f\left(\frac{5}{2}\right)=15$; that is,

$$
15=f\left(\frac{5}{2}\right)=C\left(\frac{5}{2}+5\right)\left(\frac{5}{2}+1\right)\left(\frac{5}{2}-2\right)\left(\frac{5}{2}-6\right)=C\left(\frac{15}{2}\right)\left(\frac{7}{2}\right)\left(\frac{1}{2}\right)\left(-\frac{7}{2}\right) .
$$

Spare yourself computational inconvenience by canceling 15 from both sides to get

$$
C\left(\frac{1}{2}\right)\left(\frac{7}{2}\right)\left(\frac{1}{2}\right)\left(-\frac{7}{2}\right)=1
$$

and thus $C=-\frac{16}{49}$. Therefore

$$
f(x)=-\frac{16}{49}(x+5)(x+1)(x-2)(x-6) .
$$

3 Solve $2 x^{3}-3 x^{2}-3 x-5=0$.
Let $f(x)=2 x^{3}-3 x^{2}-3 x-5$. Possible rational zeros of f are $\pm 1, \pm 5, \pm \frac{5}{2}, \pm \frac{1}{2}$. With some trial-and-error we find that $\frac{5}{2}$ is a zero, and dividing $f(x) \div\left(x-\frac{5}{2}\right)$ gives the quotient $2 x^{2}+2 x+2$. Thus

$$
f(x)=\left(x-\frac{5}{2}\right)\left(2 x^{2}+2 x+2\right)=(2 x-5)\left(x^{2}+x+1\right)
$$

The equation to solve, $f(x)=0$, now becomes

$$
(2 x-5)\left(x^{2}+x+1\right)=0
$$

satisfied if either $2 x-5=0$ or $x^{2}+x+1=0$. The former equation gives $x=\frac{5}{2}$ of course, while the latter can be solved with the quadratic formula to give $x=-\frac{1}{2} \pm \frac{\sqrt{3}}{2} i$. Solution set is

$$
\left\{\frac{5}{2},-\frac{1}{2} \pm \frac{\sqrt{3}}{2} i\right\}
$$

