1. 5 pts. each Find the exact value of each expression, or state that it is undefined.
(a) $\tan ^{-1}\left[\tan \left(-\frac{2 \pi}{3}\right)\right]$
(b) $\cos ^{-1}\left[\sin \left(\frac{7 \pi}{6}\right)\right]$
2. 10 pts. each Let $f(x)=2 \tan x-3$ for $-\frac{\pi}{2}<x<\frac{\pi}{2}$.
(a) Find the inverse function f^{-1}.
(b) Find the range of f, and the domain and range of f^{-1}.
3. 10 pts. Write the trigonometric expression $\tan \left(\cos ^{-1} u\right)$ as an algebraic expression in u.
4. 10 pts. each Solve each trigonometric equation on the interval $0 \leq \theta<2 \pi$.
(a) $2 \cos ^{2} \theta+\cos \theta-1=0$
(b) $(\cot \theta+1)\left(\csc \theta-\frac{1}{2}\right)=0$
5. 10 pts. What are the zeros of $f(x)=2 \cos (3 x)+1$ on the interval $[0, \pi]$?
6. 10 pts. each Establish the identity, showing all steps.
(a) $\frac{\cos v}{1+\sin v}+\frac{1+\sin v}{\cos v}=2 \sec v$
(b) $\tan \theta+\cot \theta=\sec \theta \csc \theta$
7. 10 pts. Find the exact value of $\sin (\alpha+\beta)$ and $\tan (\alpha-\beta)$ given that

$$
\cos \alpha=\frac{1}{2}, \quad-\frac{\pi}{2}<\alpha<0 ; \quad \sin \beta=\frac{1}{3}, \quad 0<\beta<\frac{\pi}{2}
$$

8. 10 pts. each Establish the identity
(a) $\sec (\alpha-\beta)=\frac{\sec \alpha \sec \beta}{1+\tan \alpha \tan \beta}$
(b) $\tan (v / 2)=\csc v-\cot v$
9. 10 pts . Solve the equation $\sin (2 \theta)=\cos \theta$ on the interval $0 \leq \theta<2 \pi$.
10. 10 pts. A 22 -foot ladder leaning against a building makes a 70° angle with the ground. How far up the building does the ladder touch?
11. 10 pts. each Solve the triangle, rounding to the tenths place.
(a) $A=50^{\circ}, B=30^{\circ}, a=1$.
(b) $a=3, b=4, A=10^{\circ}$.
(c) $a=10, b=7, c=8$.
12. 15 pts. Two observers simultaneously measure the angle of elevation of a helicopter. One angle is measured as 25°, the other as 40°. If the observers are 100 meters apart and the helicopter lies over the line joining them, how high is the helicopter?

TRIGONOMETRIC IDENTITIES

$\sin (u \pm v)=\sin u \cos v \pm \cos u \sin v$
$\cos (u \pm v)=\cos u \cos v \mp \sin u \sin v$
$\tan (u \pm v)=\frac{\tan u \pm \tan v}{1 \mp \tan u \tan v}$
$\sin 2 u=2 \sin u \cos u$
$\cos 2 u=\cos ^{2} u-\sin ^{2} u$
$\tan 2 u=\frac{2 \tan u}{1-\tan ^{2} u}$
$\sin \frac{u}{2}= \pm \sqrt{\frac{1-\cos u}{2}}, \quad \cos \frac{u}{2}= \pm \sqrt{\frac{1+\cos u}{2}}, \quad \tan \frac{u}{2}=\frac{\sin u}{1+\cos u}$

