1. 15 pts. Find the domain, range, and horizontal asymptote of $f(x)=6-2^{x+3}$.
2. 10 pts. Solve for x, showing all work as usual: $9^{2 x} \cdot 27^{x^{2}}=3^{-1}$.
3. 10 pts . Find the domain of the function

$$
H(x)=32+4 \log _{7}\left(4-\frac{x}{3}\right) .
$$

4. 10 pts . Find f^{-1}, the inverse of the function $f(x)=\frac{1}{2} \log (2 x)-9$.
5. 10 pts. Showing work (as ever), find the exact solution to $e^{-2 x+3}=12$.
6. 10 pts . Write the expression as a sum and/or difference of logarithms, expressing powers as factors:

$$
\ln \left[\frac{(x-4)^{2}}{x^{2}-1}\right]^{2 / 3}, \quad x>4
$$

7. 10 pts. Express y as a function of x, eliminating all logarithms (C is a positive constant):

$$
\ln y=2 \ln x-\ln (x+1)+\ln C .
$$

8. 10 pts. each Solve each equation in exact form. The Change-of-Base Formula may be necessary.
(a) $\log _{5}(x+3)=1-\log _{5}(x-1)$
(b) $0.3^{1+x}=1.7^{2 x-1}$
(c) $\log _{2}(x+1)-\log _{4} x=1$
9. The population of a midwestern city follows the exponential law.
(a) 5 pts. If N is the city's population and t is the time in years, express N as a function of t.
(b) 10 pts. If the population decreased from 900,000 to 800,000 from 2005 to 2007, what was the population in $2009 ?$
10. 15 pts. A kettle full of water is brought to a boil in a room with temperature $20^{\circ} \mathrm{C}$. After 15 minutes the temperature of the water has decreased from $100^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$. Find the temperature after another 10 minutes, using Newton's Law of Cooling.
11. 10 pts. Convert 127.117° to degree-minute-second format, rounding to the nearest second. Show work.
12. 10 pts . The terminal side of the angle θ contains the point $(-0.3,0.4)$. Find the exact value of each of the six trigonometric functions of θ.
13. 10 pts. Given that $\sin \theta=-1 / \sqrt{5}$ and $\cos \theta=-2 / \sqrt{5}$, find the exact values of the remaining trigonometric functions of θ.
14. 10 pts. Given that $\csc \theta=3$ and $\cot \theta<0$, find the exact values of all trigonometric functions of θ.
