1. 10 pts. Use the Binomial Theorem to find the coefficient of x^{3} in the expansion of $(2 x+1)^{12}$.
2. 10 pts. Construct a polynomial function of degree 6 having zeros -1 (with multiplicity 2), 5 (with multiplicity 1), and 0 (with multiplicity 3). Don't bother to expand the product.
3. 10 pts. Construct a polynomial function of degree 3 having zeros $-4,-1$, and 2 , and also having y-intercept 16 .
4. 15 pts . Let $f(x)=3 x^{4}+4 x^{3}+7 x^{2}+8 x+2$. Use the Rational Zeros Theorem to find all the real zeros of f, then use the zeros to factor f over the real numbers.
5. 15 pts. Solve the equation in the real number system:

$$
2 x^{4}+7 x^{3}+x^{2}-7 x-3=0 .
$$

6. 10 pts. Given that $3 i$ is a zero of

$$
H(x)=3 x^{4}+5 x^{3}+25 x^{2}+45 x-18
$$

find the remaining zeros of H.
7. 5 pts. each Let

$$
U(x)=\frac{8 x^{2}+26 x-7}{4 x-1}
$$

(a) Find the domain of U.
(b) Find the intercepts of U.
(c) Find all vertical asymptotes of U, if any.
(d) Find the horizontal or oblique asymptote of U, if any.
8. 10 pts. each Solve each inequality algebraically.
(a) $x^{2}+6 x<16$.
(b) $\frac{5}{x-1} \geq \frac{3}{x+2}$
9. 10 pts . For $f(x)=x^{2}-6$ and $g(x)=4 / x$ find $(f \circ g)(4),(g \circ f)(2),(f \circ f)(1)$, and $(g \circ g)(-2)$.
10. 10 pts. each Let

$$
f(x)=\sqrt{2 x-12} \quad \text { and } \quad g(x)=\frac{3}{x} .
$$

(a) Find $f \circ g$, and state its domain.
(b) Find $g \circ f$, and state its domain.
(c) Find $g \circ g$, and state its domain.
11. 10 pts. each Find the inverse of each function.
(a) $f(x)=9-3 x$
(b) $g(x)=2+\frac{3}{x^{2}}, \quad x<0$

