Math 125 Spring 2019 Exam 2

NAME:

- 1. 10 pts. Expand $(2x+3)^5$ using the Binomial Theorem.
- 2. 10 pts.) Form a polynomial function of degree 4 having zeros -3 (with multiplicity 2), -1 (with multiplicity 1), and 5 (with multiplicity 1).

3. 2.5 pts. each Let $f(x) = -4(x+4)^2(x+3)^5$.

- (a) List each real zero of f and its multiplicity.
- (b) Determine whether the graph of f crosses or touches the x-axis at each x-intercept.
- (c) Determine the maximum number of turning points on the graph of f.
- (d) Determine the end behavior of the graph of f.
- 4. Is pts. Let $f(x) = x^4 x^3 6x^2 + 4x + 8$. Use the Rational Zeros Theorem to find all the real zeros of f, then use the zeros to factor f over the real numbers.
- 5. 10 pts. Solve the equation in the real number system:

$$2x^3 - 11x^2 + 10x + 8 = 0.$$

6. 10 pts. The complex number 1 + 3i is a zero of

$$f(x) = x^4 - 7x^3 + 14x^2 - 38x - 60.$$

Find the remaining zeros of f.

7. 5 pts. each For the rational function

$$T(x) = \frac{x^2 + 6x + 5}{2x^2 + 7x + 5}$$

do the following.

- (a) Find the domain of T.
- (b) Find the intercepts of T.
- (c) Find all vertical asymptotes of T, if any.
- (d) Find the horizontal or oblique asymptote of T, if any.

8. 10 pts. each Solve each inequality algebraically.

(a)
$$x^3 - 2x^2 - 3x > 0.$$

(b) $\frac{x-4}{2x+4} \ge 1$

9. 10 pts. For $f(x) = \sqrt{x+1}$ and g(x) = 3x find $(f \circ g)(4)$, $(g \circ f)(2)$, $(f \circ f)(1)$, and $(g \circ g)(0)$.

10. 10 pts. each Let

$$f(x) = x^2 + 1$$
 and $g(x) = \sqrt{x - 1}$.

- (a) Find $f \circ g$, and state its domain.
- (b) Find $g \circ f$, and state its domain.
- (c) Find $g \circ g$, and state its domain.
- 11. 10 pts. each Find the inverse of each function.

0

(a)
$$f(x) = x^3 + 1$$

(b) $g(x) = \frac{x^2 - 4}{2x^2}, x >$