MATH 125 EXAM #4 KEY (SPRING 2022)

1 $\csc \theta > 0$ and $\cot \theta < 0$ implies θ is in Quadrant II, with r = 3, y = 1, and $x = -2\sqrt{2}$. Thus $\sin \theta = \frac{1}{3}$, $\cos \theta = -\frac{2\sqrt{2}}{3}$, $\tan \theta = -\frac{1}{2\sqrt{2}}$, $\cot \theta = -2\sqrt{2}$, $\sec \theta = -\frac{3}{2\sqrt{2}}$.

- **2a** $\frac{3\pi}{10}$ **3b** $\frac{\pi}{7}$ **3c** $\sqrt{5}$ **3d** Undefined: $\sin \frac{7\pi}{6}$ is not in domain of \sec^{-1} .
- **3** $f^{-1}(x) = \frac{1}{3}\cos^{-1}(-x/2)$, with $D_{f^{-1}} = R_f = [-2, 2]$ and $R_{f^{-1}} = D_f = [0, \frac{\pi}{3}]$.

4a From $(\tan \theta)(3\tan^2 \theta - 1) = 0$ we have $\tan \theta = 0$ (so $\theta = 0, \pi$), or $\tan \theta = \frac{1}{\sqrt{3}}$ (so $\theta = \frac{\pi}{6}, \frac{7\pi}{6}$), or $\tan \theta = -\frac{1}{\sqrt{3}}$ (so $\theta = \frac{5\pi}{6}, \frac{11\pi}{6}$). Solution set is $\{0, \pi, \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}\}$.

4b Either $\sec \theta = -\sqrt{2}$ (so $\theta = \frac{3\pi}{4}, \frac{5\pi}{4}$) or $\sec \theta = \sqrt{2}$ (so $\theta = \frac{\pi}{4}, \frac{7\pi}{4}$). The solution set is: $\{\frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}\}$.

4c Write $4 + 4\sin\theta = 1 - \sin^2\theta$, so $(\sin\theta + 3)(\sin\theta + 1) = 0$. Since $\sin\theta = -3$ is impossible, we have only $\sin\theta = -1$, and thus $\theta = \frac{3\pi}{2}$.

5a Starting with the left-hand side, we have

$$\frac{\frac{1}{\sin} - \frac{\cos}{\sin}}{\frac{1}{\cos} - 1} \cdot \frac{\cos}{\cos} = \frac{\frac{(1 - \cos)\cos}{\sin}}{1 - \cos} = \frac{\cos}{\sin} = \cot.$$

5b Starting with the left-hand side,

$$\frac{1}{1-\sin} = \frac{1+\sin}{(1-\sin)(1+\sin)} = \frac{1+\sin}{1-\sin^2} = \frac{1+\sin}{\cos^2} = \frac{1}{\cos^2} + \frac{\sin}{\cos} \cdot \frac{1}{\cos} = \sec^2 + \tan\sec.$$

- 6 Let d be the distance the target is missed. Then $\tan 0.4^\circ = \frac{d}{384,000}$ implies $d = 384,000 \tan 0.4^\circ = 2683.7 \approx 2700$ km.
- 7 Let d be the distance between ship and lighthouse. Then

$$\tan 21^{\circ} = \frac{70}{d} \implies d = \frac{70}{\tan 21^{\circ}} = 182.4 \approx 182 \text{ m}.$$

- **8a** $B = 110^{\circ}$ is immediate, and with the Law of Sines we find that b = 3.68 and c = 1.34.
- **8b** Use the Law of Sines to get $\sin A = 2\sin 100^{\circ} \approx 1.97$, which is impossible, and so no triangle results.
- **9** This is the ambiguous case of the Law of Sines. The two possible distances to Venus are 164,200,000 km and 65,000,000 km.