Math 125 Exam \#4 Key (Spring 2022)

$1 \csc \theta>0$ and $\cot \theta<0$ implies θ is in Quadrant II, with $r=3, y=1$, and $x=-2 \sqrt{2}$. Thus $\sin \theta=\frac{1}{3}, \cos \theta=-\frac{2 \sqrt{2}}{3}, \tan \theta=-\frac{1}{2 \sqrt{2}}, \cot \theta=-2 \sqrt{2}, \sec \theta=-\frac{3}{2 \sqrt{2}}$.

2a $\frac{3 \pi}{10} \quad \mathbf{3 b} \frac{\pi}{7} \quad \mathbf{3 c} \sqrt{5} \quad$ 3d Undefined: $\sin \frac{7 \pi}{6}$ is not in domain of $\sec ^{-1}$.
$3 f^{-1}(x)=\frac{1}{3} \cos ^{-1}(-x / 2)$, with $D_{f^{-1}}=R_{f}=[-2,2]$ and $R_{f^{-1}}=D_{f}=\left[0, \frac{\pi}{3}\right]$.

4a From $(\tan \theta)\left(3 \tan ^{2} \theta-1\right)=0$ we have $\tan \theta=0($ so $\theta=0, \pi)$, or $\tan \theta=\frac{1}{\sqrt{3}}\left(\right.$ so $\left.\theta=\frac{\pi}{6}, \frac{7 \pi}{6}\right)$, or $\tan \theta=-\frac{1}{\sqrt{3}}$ (so $\theta=\frac{5 \pi}{6}, \frac{11 \pi}{6}$). Solution set is $\left\{0, \pi, \frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}\right\}$.

4b Either $\sec \theta=-\sqrt{2}\left(\operatorname{so} \theta=\frac{3 \pi}{4}, \frac{5 \pi}{4}\right)$ or $\sec \theta=\sqrt{2}\left(\operatorname{so} \theta=\frac{\pi}{4}, \frac{7 \pi}{4}\right)$. The solution set is: $\left\{\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}\right\}$.

4c Write $4+4 \sin \theta=1-\sin ^{2} \theta$, so $(\sin \theta+3)(\sin \theta+1)=0$. Since $\sin \theta=-3$ is impossible, we have only $\sin \theta=-1$, and thus $\theta=\frac{3 \pi}{2}$.

5a Starting with the left-hand side, we have

$$
\frac{\frac{1}{\sin }-\frac{\cos }{\sin }}{\frac{1}{\cos }-1} \cdot \frac{\cos }{\cos }=\frac{\frac{(1-\cos) \cos }{\sin }}{1-\cos }=\frac{\cos }{\sin }=\cot
$$

5b Starting with the left-hand side,

$$
\frac{1}{1-\sin }=\frac{1+\sin }{(1-\sin)(1+\sin)}=\frac{1+\sin }{1-\sin ^{2}}=\frac{1+\sin }{\cos ^{2}}=\frac{1}{\cos ^{2}}+\frac{\sin }{\cos } \cdot \frac{1}{\cos }=\sec ^{2}+\tan \sec
$$

6 Let d be the distance the target is missed. Then $\tan 0.4^{\circ}=\frac{d}{384,000}$ implies

$$
d=384,000 \tan 0.4^{\circ}=2683.7 \approx 2700 \mathrm{~km}
$$

7 Let d be the distance between ship and lighthouse. Then

$$
\tan 21^{\circ}=\frac{70}{d} \Rightarrow d=\frac{70}{\tan 21^{\circ}}=182.4 \approx 182 \mathrm{~m}
$$

8a $B=110^{\circ}$ is immediate, and with the Law of Sines we find that $b=3.68$ and $c=1.34$.
$\mathbf{8 b}$ Use the Law of Sines to get $\sin A=2 \sin 100^{\circ} \approx 1.97$, which is impossible, and so no triangle results.

9 This is the ambiguous case of the Law of Sines. The two possible distances to Venus are $164,200,000 \mathrm{~km}$ and $65,000,000 \mathrm{~km}$.

