## Math 125 Exam \#3 Key (Spring 2022)

1a We have

$$
(f \circ g)(x)=f(g(x))=f(2 / \sqrt{x})=\frac{2 / \sqrt{x}}{1-4 / \sqrt{x}}=\frac{2}{\sqrt{x}-4}
$$

and

$$
(g \circ f)(x)=g(f(x))=g\left(\frac{x}{1-2 x}\right)=\frac{2}{\sqrt{\frac{x}{1-2 x}}}
$$

1b $D_{f \circ g}=\left\{x: x \in D_{g} \& g(x) \in D_{f}\right\}$ with $D_{g}=(0, \infty)$ and $D_{f}=\left(-\infty, \frac{1}{2}\right) \cup\left(\frac{1}{2}, \infty\right)$. Thus:

$$
D_{f \circ g}=\left\{x: x>0 \& \frac{2}{\sqrt{x}} \neq \frac{1}{2}\right\}=\left(0, \frac{1}{16}\right) \cup\left(\frac{1}{16}, \infty\right)
$$

1c $D_{g \circ f}=\left\{x: x \in D_{f} \& f(x) \in D_{g}\right\}$, so

$$
D_{g \circ f}=\left\{x: x \neq \frac{1}{2} \& \frac{x}{1-2 x}>0\right\}=\left(0, \frac{1}{2}\right) .
$$

2 Need $(f \circ g)(0)=-20$, where $(f \circ g)(0)=f(g(0))=3 c^{2}-7$. Thus $c$ must be such that $3 c^{2}-7=-20$, or $c^{2}=-\frac{13}{3}$. But there is no real $c$ value that can satisfy this, and so there is no solution here.

3a Let $y=T(x)$, so $y=\frac{2 x-3}{x+4}$. Solve for $x$ to get $x=\frac{4 y+3}{2-y}$, and thus

$$
T^{-1}(y)=\frac{4 y+3}{2-y}
$$

3b $\quad R_{T}=D_{T^{-1}}=(-\infty, 2) \cup(2, \infty)$ and $R_{T^{-1}}=D_{T}=(-\infty,-4) \cup(-4, \infty)$.
4a $\quad 5^{x+3}=5^{-2}$ implies $x+3=-2$, so $x=-5$.
4b Write $x^{3}=\frac{1}{8}$, so $x=\frac{1}{2}$.
4c Write $\log _{3} \frac{(x+4)^{2}}{9}=2$, so $\frac{(x+4)^{2}}{9}=3^{2}$, giving $x=-13,5$. But -13 is extraneous, so $x=5$.

4d Write $\log _{5}(x+3)(x-1)=1$, so $(x+3)(x-1)=5$, giving $x=-4,2$. But -4 is extraneous, so $x=2$.

4e Write $\left(3^{x}\right)^{2}-3 \cdot 3^{x}+1=0$. Letting $u=3^{x}$ makes this $u^{2}-3 u+1=0$, so that

$$
3^{x}=u=\frac{3 \pm \sqrt{3^{2}-4(1)(1)}}{2(1)}=\frac{3 \pm \sqrt{5}}{2}
$$

and thus $x=\log _{3} \frac{3 \pm \sqrt{5}}{2}$.
4f With the change-of-base formula:

$$
\log _{2} x+\frac{\log _{2} x}{\log _{2} 4}+\frac{\log _{2} x}{\log _{2} 8}=11 \quad \hookrightarrow \quad \log _{2} x+\frac{\log _{2} x}{2}+\frac{\log _{2} x}{3}=11 \quad \hookrightarrow \quad \log _{2} x=6
$$

so $x=2^{6}=64$.
5a Set $y=v(x)$, so $y=8-\log _{6}(2 x+1)$, giving $x=\frac{6^{8-y}-1}{2}$, and hence $v^{-1}(y)=\frac{6^{8-y}-1}{2}$.
5b $\quad R_{v^{-1}}=D_{v}=\left(-\frac{1}{2}, \infty\right)$ and $R_{v}=D_{v^{-1}}=(-\infty, \infty)$.

6a $\quad N(0)=1000$.

6b To the nearest tenth ${ }^{1}: N(4)=1000 e^{0.01(4)} \approx 1040.8$.
6c Find $t$ for which $N(t)=1600$. This means solving $1000 e^{0.01 t}=1600$ to get $t=\frac{\ln 1.6}{0.01} \approx 47.0$ hours.

7 Convert $0.444^{\circ}$ to minutes: $\left(0.444^{\circ}\right)\left(\frac{60^{\prime}}{1^{\circ}}\right)=26.64^{\prime}$.
Convert $0.64^{\prime}$ to seconds, and round to the nearest second: $\left(0.64^{\prime}\right)\left(\frac{60^{\prime \prime}}{1^{\prime}}\right)=38.4^{\prime \prime} \approx 38^{\prime \prime}$. Therefore $44.444^{\circ} \approx 44^{\circ} 26^{\prime} 38^{\prime \prime}$.

8 The point given lies on a circle of radius $\sqrt{10}$, so:

$$
\sin \theta=-\frac{3}{\sqrt{10}}, \quad \cos \theta=\frac{1}{\sqrt{10}}, \quad \tan \theta=-3, \quad \csc \theta=-\frac{\sqrt{10}}{3}, \quad \sec \theta=\sqrt{10}, \quad \cot \theta=-\frac{1}{3}
$$

9 With use of the $30-60-90$ right triangle in the first quadrant we find the angle to be $\frac{\pi}{3}$. Other angles are given by $\frac{\pi}{3}+2 \pi n=\frac{\pi+6 \pi n}{3}$ for integers $n$, so letting $n=-2,-1,0,1,2$ we obtain the angles

$$
-\frac{11 \pi}{3}, \quad-\frac{5 \pi}{3}, \quad \frac{\pi}{3}, \quad \frac{7 \pi}{3}, \quad \frac{13 \pi}{3} .
$$

[^0]
[^0]:    ${ }^{1}$ Normally a population would be rounded to the nearest whole number, but this entire problem was handed to me by the college as part of a college-wide "assessment," so we're stuck with this notion of having four fifths of a bacterium.

