Math 125 Exam \#2 Key (Spring 2022)

1 Put the axis of symmetry atop the y-axis such that the vertex is at $(0,25)$ and the x intercepts are ± 60. The vertex form for the parabola is $f(x)=a x^{2}+25$, but with $f(60)=0$ we find that $a=-\frac{1}{144}$, and so $f(x)=-\frac{1}{144} x^{2}+25$. The height of the arch 10 meters from the center is $f(10)=\frac{875}{36}=24.30 \overline{5}$ meters.

2 Solve $f(x)=0$, or $-2 x^{2}+8 x+1=0$. With the quadratic forumula we obtain $x=2 \pm \frac{3 \sqrt{2}}{2}$.

3 Write $|x / 2|=2$, so $x / 2= \pm 2$ and finally $x= \pm 4$.

4 From $|1-4 x|<6$ we have $-6<1-4 x<6$, which becomes $-\frac{5}{4}<x<\frac{7}{4}$. Solution set is $\left(-\frac{5}{4}, \frac{7}{4}\right)$.

5 We have $f(x)=C x^{2}(x-2)(x+1)^{2}$, with $4=f(1)=C(-1)(2)^{2}$ implying that $C=-1$. Thus the polynomial function is $f(x)=-x^{2}(x-2)(x+1)^{2}$.

6 To have real coefficients the Conjugate Zeros Theorem implies that $2-i$ must also be a zero, and so we need

$$
\begin{aligned}
f(x) & =(x+4)[x-(2+i)][x-(2-i)] \\
& =(x+4)\left(x^{2}-4 x+5\right) \\
& =x^{3}-11 x+20 .
\end{aligned}
$$

7 The rational zeros that G could possibly have include such values as 1 and -5 , which are in fact zeros for G. We use synthetic division to start factoring $G(x)$:

$$
\begin{aligned}
& \text { 1) } \begin{array}{rrrr|r}
2 & 11 & -5 & -43 & 35 \\
& 2 & 13 & 8 & -35 \\
\hline 2 & 13 & 8 & -35 & 0
\end{array} \longrightarrow f(x)=(x-1)\left(2 x^{3}+13 x^{2}+8 x-35\right) \\
& \begin{array}{l|rr|r}
-5 & 2 & 13 & 8 \\
2 & -35 \\
& -10 & -15 & 35 \\
\hline 2 & 3 & -7 & 0
\end{array} \longrightarrow f(x)=(x-1)(x+5)\left(2 x^{2}+3 x-7\right)
\end{aligned}
$$

Solving $2 x^{2}+3 x-7=0$ using the quadratic formula, we obtain the complete list of real zeros: $-5,1, \frac{-3 \pm \sqrt{65}}{4}$.

The complete factorization is

$$
G(x)=(x-1)(x+5)\left(x+\frac{3+\sqrt{65}}{4}\right)\left(x+\frac{3-\sqrt{65}}{4}\right) .
$$

8 Let $f(x)=x^{3}-8 x^{2}+25 x-26$, so the problem is to find all x such that $f(x)=0$. Among the possible rational zeros is 2 , which turns out to work:

$$
\begin{array}{ccc|ccc}
2 & -8 & 25 & -26 & \longrightarrow & \text { So } 2 \text { is a zero and } f(x)=(x-2)\left(x^{2}-6 x+13\right) .
\end{array}
$$

Applying ye olde quadratic formula to $x^{2}-6 x+13=0$ yields the zeros $3 \pm 2 i$. In conclusion, f has zeros $2,3-2 i, 3+2 i$, which are therefore the solutions to the given equation.

9 Factoring shows the fraction is reduced:

$$
\Psi(x)=\frac{x\left(x^{2}+2\right)}{(x-3)(x-4)} .
$$

There are vertical asymptotes $x=3, x=4$. Also, long division also shows $y=x+7$ is an oblique asymptote:

$$
\begin{aligned}
&\left.x^{2}-7 x+12\right) x+7 \\
& \cline { 2 - 3 } \begin{array}{r}
x^{3} \\
-x^{3}+7 x^{2}-12 x \\
7 x^{2}-10 x \\
-7 x^{2}+49 x-84 \\
39 x-84
\end{array}
\end{aligned}
$$

10a Write $x^{3}+x^{2}-4 x-4<0$, then factor by grouping to get $(x+1)(x-2)(x+2)<0$. Using the Intermediate Value Theorem we find the solution set to be $(-\infty,-2) \cup(-1,2)$.

10b Write

$$
\frac{2 x-6}{1-x}-\frac{2(1-x)}{1-x} \leq 0 \quad \hookrightarrow \quad \frac{4 x-8}{1-x} \leq 0 \quad \hookrightarrow \quad f(x)=\frac{x-2}{1-x} \leq 0
$$

Here f has zero 2 and vertical asymptote $x=1$. Choose test values in the intervals $(-\infty, 1)$, $(1,2)$, and $(2, \infty)$, and use the Intermediate Value Theorem to find the solution set to be $(-\infty, 1) \cup[2, \infty)$.

11 Find all x such that $x^{3}>4 x^{2}$, which becomes $x^{2}(x-4)>0$. Since $x^{2}>0$ for any $x \neq 0$, the inequality is satisfied if and only if $x-4>0$. Solution set is $(4, \infty)$.

