1 Put the axis of symmetry atop the y-axis such that the vertex is at (0, 25) and the xintercepts are ± 60 . The vertex form for the parabola is $f(x) = ax^2 + 25$, but with f(60) = 0 we find that $a = -\frac{1}{144}$, and so $f(x) = -\frac{1}{144}x^2 + 25$. The height of the arch 10 meters from the center is $f(10) = \frac{875}{36} = 24.30\overline{5}$ meters.

2 Solve f(x) = 0, or $-2x^2 + 8x + 1 = 0$. With the quadratic formula we obtain $x = 2 \pm \frac{3\sqrt{2}}{2}$.

3 Write |x/2| = 2, so $x/2 = \pm 2$ and finally $x = \pm 4$.

4 From |1-4x| < 6 we have -6 < 1-4x < 6, which becomes $-\frac{5}{4} < x < \frac{7}{4}$. Solution set is $(-\frac{5}{4}, \frac{7}{4}).$

5 We have $f(x) = Cx^2(x-2)(x+1)^2$, with $4 = f(1) = C(-1)(2)^2$ implying that C = -1. Thus the polynomial function is $f(x) = -x^2(x-2)(x+1)^2$.

6 To have real coefficients the Conjugate Zeros Theorem implies that 2 - i must also be a zero, and so we need

$$f(x) = (x+4)[x - (2+i)][x - (2-i)]$$

= (x+4)(x² - 4x + 5)
= x³ - 11x + 20.

7 The rational zeros that G could possibly have include such values as 1 and -5, which are in fact zeros for G. We use synthetic division to start factoring G(x):

Solving $2x^2 + 3x - 7 = 0$ using the quadratic formula, we obtain the complete list of real zeros: -5, 1, $\frac{-3\pm\sqrt{65}}{4}$. The complete factorization is

$$G(x) = (x-1)(x+5)\left(x+\frac{3+\sqrt{65}}{4}\right)\left(x+\frac{3-\sqrt{65}}{4}\right)$$

8 Let $f(x) = x^3 - 8x^2 + 25x - 26$, so the problem is to find all x such that f(x) = 0. Among the possible rational zeros is 2, which turns out to work:

Applying ye olde quadratic formula to $x^2 - 6x + 13 = 0$ yields the zeros $3 \pm 2i$. In conclusion, f has zeros 2, 3 - 2i, 3 + 2i, which are therefore the solutions to the given equation.

9 Factoring shows the fraction is reduced:

$$\Psi(x) = \frac{x(x^2 + 2)}{(x - 3)(x - 4)}.$$

There are vertical asymptotes x = 3, x = 4. Also, long division also shows y = x + 7 is an oblique asymptote:

$$\begin{array}{r} x + 7 \\
 x^{2} - 7x + 12 \hline x^{3} + 2x \\
 -x^{3} + 7x^{2} - 12x \\
 \overline{7x^{2} - 10x} \\
 -7x^{2} + 49x - 84 \\
 \overline{39x - 84}
 \end{array}$$

10a Write $x^3 + x^2 - 4x - 4 < 0$, then factor by grouping to get (x + 1)(x - 2)(x + 2) < 0. Using the Intermediate Value Theorem we find the solution set to be $(-\infty, -2) \cup (-1, 2)$.

10b Write

$$\frac{2x-6}{1-x} - \frac{2(1-x)}{1-x} \le 0 \quad \longleftrightarrow \quad \frac{4x-8}{1-x} \le 0 \quad \longleftrightarrow \quad f(x) = \frac{x-2}{1-x} \le 0.$$

Here f has zero 2 and vertical asymptote x = 1. Choose test values in the intervals $(-\infty, 1)$, (1, 2), and $(2, \infty)$, and use the Intermediate Value Theorem to find the solution set to be $(-\infty, 1) \cup [2, \infty)$.

11 Find all x such that $x^3 > 4x^2$, which becomes $x^2(x-4) > 0$. Since $x^2 > 0$ for any $x \neq 0$, the inequality is satisfied if and only if x - 4 > 0. Solution set is $(4, \infty)$.