Math 125 Exam \#1 Key (Spring 2022)

$1 f(-3)=-2$ and $f(x-2)=1-\frac{45}{(x-2)^{2}+6}$.

2a $\quad D_{\ell}=\left\{x \mid x^{2}+3 x+2 \neq 0\right\}=\{x \mid x \neq-1,-2\}=(-\infty,-2) \cup(-2,-1) \cup(-1, \infty)$.

2b $D_{u}=\{t \mid t+8>0\}=(-8, \infty)$.

3 First,

$$
(f / g)(x)=\frac{2-\frac{1}{x-9}}{\frac{\sqrt{x}}{x-1}}=\left(2-\frac{1}{x-9}\right)\left(\frac{x-1}{\sqrt{x}}\right)
$$

Now, $D_{f}=\{x \mid x \neq 9\}, D_{g}=[0,1) \cup(1, \infty)$, and $g(x)=0$ only if $x=0$. With these facts we find

$$
D_{f / g}=\left\{x \mid x \in D_{f} \cap D_{g} \& g(x) \neq 0\right\}=(0,1) \cup(1,9) \cup(9, \infty) .
$$

$4-1=f(2)=\frac{5}{6-c}$, and so $c=11$.
$5 D_{f}=[-5,5)$ and $R_{f}=(0,5] \cup\{-3\}$. Definition follows:

$$
f(x)=\left\{\begin{aligned}
x+7, & -5 & \leq x<-2 \\
-\frac{5}{2} x, & & -2 \leq x<0 \\
-3, & & 0 \leq x<5
\end{aligned}\right.
$$

$6 y=x^{2} \xrightarrow{(1)} y=(x-3)^{2} \xrightarrow{(2)} y=(-x-3)^{2} \xrightarrow{(3)} f(x)=(-x-3)^{2}-4$.
$7 A(x)=x\left(10-x^{2}\right)$, and since the x-intercept of the parabola in Quadrant I is $\sqrt{10}$, the domain of A must be $(0, \sqrt{10})$. See figure below.

8 Solving $2 x^{2}+5 x+3=0$, we get $x^{2}+\frac{5}{2} x+\left(\frac{5}{4}\right)^{2}=-\frac{3}{2}+\left(\frac{5}{4}\right)^{2}$, or $\left(x+\frac{5}{4}\right)^{2}=\frac{1}{16}$, which upon taking the square root yields $x=-\frac{5}{4} \pm \frac{1}{4}$. The zeros of p are $-\frac{3}{2}$ and -1 .

9 From $u(x)=0$ factorization gives $\left(x^{2}-4\right)\left(x^{2}-6\right)=0$, and so the zeros of u are $\pm 2, \pm \sqrt{6}$.
10 The vertex is at $\left(-\frac{1}{3}, \frac{14}{3}\right)$, with axis of symmetry $x=-\frac{1}{3}$, domain $D_{f}=(-\infty, \infty)$, and range $R_{f}=\left[\frac{14}{3}, \infty\right)$.

