Math 125 Exam \#3 Key (Spring 2021)

1a Suppose $\Omega(a)=\Omega(b)$, so that $\frac{8}{3-\sqrt{a}}=\frac{8}{3-\sqrt{b}}$, and hence $3-\sqrt{a}=3-\sqrt{b}$. From this it follows that $\sqrt{a}=\sqrt{b}$, and hence $a=b$. Therefore Ω is one-to-one.

1b Let $y=\Omega(x)$, so $y=\frac{8}{3-\sqrt{x}}$. Solving for \sqrt{x} gives $\sqrt{x}=\frac{3 y-8}{y}$, and thus

$$
\Omega^{-1}(y)=x=\left(\frac{3 y-8}{y}\right)^{2}
$$

1c $\operatorname{Ran} \Omega=\operatorname{Dom} \Omega^{-1}=(-\infty, 0) \cup(0, \infty)$ and $\operatorname{Ran} \Omega^{-1}=\operatorname{Dom} \Omega=[0,9) \cup(9, \infty)$.

2 From $2^{x^{2}+2 x}=2^{8}$ we have $x^{2}+2 x=8$, and so $x=-4,2$.

3a Let $y=\Psi(x)$, so $y=\ln (2 x-4)+6$, and then $2 x-4=e^{y-6}$. Solving for x, we get

$$
\Psi^{-1}(y)=x=\frac{e^{y-6}+4}{2}
$$

3b $\operatorname{Ran} \Psi=\operatorname{Dom} \Psi^{-1}=(-\infty, \infty)$ and $\operatorname{Ran} \Psi^{-1}=\operatorname{Dom} \Psi=(2, \infty)$.

4a Write $\log _{6}(x+3)(x+4)=1$, so $(x+3)(x+4)=6$, and then $(x+6)(x+1)=0$. This results in $x=-6,-1$, but -6 is extraneous, so the solution set is $\{-1\}$.

4b $e^{-2 x+3}=12$ implies $-2 x+3=\ln 12$, and thus $x=\frac{3-\ln 12}{2}$.

4c Write equation as $\left(2^{x}\right)^{2}+4 \cdot 2^{x}-12=0$. Let $u=2^{x}$ so equation becomes $u^{2}+4 u-12=0$, and solve this to get $u=-6,2$. Thus $2^{x}=-6,2$, but since $2^{x}=-6$ is impossible we're left with $2^{x}=2$, or $x=1$. Solution set: $\{1\}$.

4d With the Change-of-Base Formula we get, since $\log _{3} 9=2$,

$$
\frac{\log _{3}(7 x-5)}{\log _{3} 9}=\log _{3}(x+1) \Rightarrow \log _{3}(7 x-5)=\log _{3}(x+1)^{2} \Rightarrow 7 x-5=(x+1)^{2}
$$

The last equation has solutions $x=2,3$, and so the solution set of the original equation is $\{2,3\}$.

5a $\quad N(t)=N_{0} e^{k t}$.

5b Let $t=0$ for the year 2005 , so $N_{0}=N(0)=900,000$, and then $N(t)=900,000 e^{k t}$. Using $N(2)=800,000$ (since $t=2$ in 2007) gives

$$
800,000=900,000 e^{2 k} \Rightarrow k=\frac{1}{2} \ln \frac{8}{9} \approx-0.05889
$$

so

$$
N(t)=900,000 e^{-0.05889 t}
$$

Population in 2009 (when $t=4$) is thus

$$
N(8)=900,000 e^{-0.05889(4)} \approx 711,115
$$

Round to the nearest whole number for a population.

6 We're given $u_{0}=100^{\circ} \mathrm{C}$ (so $u(0)=100$), $T=20^{\circ} \mathrm{C}$, and also $u(15)=75$. With Newton's Law of Cooling:

$$
75=u(15)=20+(100-20) e^{15 k}
$$

which gives $k=\frac{1}{15} \ln \frac{55}{80} \approx-0.025$. Thus the model is

$$
u(t)=20+80 e^{-0.025 t}
$$

After another 10 minutes (when $t=25$), the temperature is

$$
u(25)=20+80 e^{-0.025(25)} \approx 62.8^{\circ} \mathrm{C}
$$

7 Convert 0.461° to minutes:

$$
\left(0.461^{\circ}\right)\left(\frac{60^{\prime}}{1^{\circ}}\right)=27.66^{\prime}
$$

Convert 0.66^{\prime} to seconds, and round to the nearest second:

$$
\left(0.66^{\prime}\right)\left(\frac{60^{\prime \prime}}{1^{\prime}}\right)=39.6^{\prime \prime} \approx 40^{\prime \prime}
$$

Therefore $87.461^{\circ} \approx 87^{\circ} 27^{\prime} 40^{\prime \prime}$.

8 The point given lies on a circle of radius $\sqrt{29}$, so:

$$
\sin \theta=\frac{5}{\sqrt{29}}, \quad \cos \theta=-\frac{2}{\sqrt{29}}, \quad \tan \theta=-\frac{5}{2}, \quad \csc \theta=\frac{\sqrt{29}}{5}, \quad \sec \theta=-\frac{\sqrt{29}}{2}, \quad \cot \theta=-\frac{2}{5}
$$

