1 Must have $f(x)=C(x-3)^{2}(x+4)(x-1)^{3}$ with C such that $f(-1)=20$. This requires $C=-\frac{5}{96}$, and so we finally get

$$
f(x)=-\frac{5}{96}(x-3)^{2}(x+4)(x-1)^{3} .
$$

2 To have real coefficients the Conjugate Zeros Theorem implies that $1+2 i$ must also be a zero, and so we need

$$
\begin{aligned}
f(x) & =(x-6)[x-(1-2 i)][x-(1+2 i)] \\
& =(x-6)\left(x^{2}-2 x+5\right) \\
& =x^{3}-8 x^{2}+17 x-30 .
\end{aligned}
$$

3 The rational zeros that G could possibly have include such values as 1 and -5 , which are in fact zeros for G. We use synthetic division to start factoring $G(x)$:

$$
\begin{array}{l|rrrr|r}
1 & 2 & 11 & -5 & -43 & 35 \\
& 2 & 13 & 8 & -35
\end{array} \longrightarrow f(x)=(x-1)\left(2 x^{3}+13 x^{2}+8 x-35\right)
$$

Solving $2 x^{2}+3 x-7=0$ using the quadratic formula, we obtain the complete list of real zeros: $-5,1, \frac{-3 \pm \sqrt{65}}{4}$.

The complete factorization is

$$
G(x)=(x-1)(x+5)\left(x+\frac{3+\sqrt{65}}{4}\right)\left(x+\frac{3-\sqrt{65}}{4}\right) .
$$

4 Let $f(x)=x^{3}-8 x^{2}+25 x-26$, so the problem is to find all x such that $f(x)=0$. Among the possible rational zeros is 2 , which turns out to work:

$$
\begin{array}{ccc|c}
2 & 1 & -8 & 25
\end{array}-26 \quad \longrightarrow \text { So } 2 \text { is a zero and } f(x)=(x-2)\left(x^{2}-6 x+13\right)
$$

Applying ye olde quadratic formula to $x^{2}-6 x+13=0$ yields the zeros $3 \pm 2 i$. In conclusion, f has zeros $2,3-2 i, 3+2 i$, which are therefore the solutions to the given equation.
$5-3 i$ must be another zero, and so $(x-3 i)(x+3 i)=x^{2}+9$ is a factor of $H(x)$. Then

$$
\begin{aligned}
& \left.x^{2}+9\right) \frac{3 x^{2}+5 x-2}{3 x^{4}+5 x^{3}+25 x^{2}+45 x-18} \\
& \begin{array}{l}
-3 x^{4}-27 x^{2} \\
5 x^{3}-2 x^{2}+45 x
\end{array} \\
& \frac{-5 x^{3}-45 x}{-2 x^{2}}-18 \\
& \begin{array}{r}
2 x^{2}+18 \\
0
\end{array}
\end{aligned}
$$

shows $3 x^{2}+5 x-2$ is another factor. Now,

$$
H(x)=0 \Rightarrow\left(x^{2}+9\right)\left(3 x^{2}+5 x-2\right)=0 \Rightarrow(x-3 i)(x+3 i)(3 x-1)(x+2)=0,
$$

and therefore other zeros of H are $\frac{1}{3}$ and -2 .

6 First we have

$$
Z(x)=\frac{(x-2)\left(x^{2}+2 x+4\right)}{(x-3)(x-2)}=\frac{x^{2}+2 x+4}{x-3}
$$

so $x=3$ is a vertical asymptote for Z. Long division then gives $Z(x)=(x+5)+\frac{19}{x-3}$, which shows that $y=x+5$ is an oblique asymptote for Z.

7 a Write $x^{4}-16>0$, then factor to get $(x-2)(x+2)\left(x^{2}+4\right)>0$. Since $x^{2}+4>0$ for any x, we divide it out to get $(x-2)(x+2)>0$, and then use the Intermediate Value Theorem to determine the solution set to be $(-\infty,-2) \cup(2, \infty)$.

7b Employ the Intermediate Value Theorem method as in class, or consider the following approach. Factoring, the inequality $x^{3}-2 x^{2}-3 x<0$ becomes $x(x-3)(x+1)<0$. Now we run through cases.

Case I: $x<0, x-3<0, x+1<0$, giving $x<-1$. Case II: $x<0, x-3>0, x+1>0$, giving a contradiction. Case III: $x>0, x-3<0, x+1>0$, giving $0<x<3$. Case IV: $x>0$, $x-3>0, x+1<0$, giving a contradiction. Solution set: $(-\infty,-1) \cup(0,3)$.

7c Get 0 on the right-hand side:

$$
\frac{3 x-5}{x+2}-2 \geq 0 \Rightarrow \frac{3 x-5}{x+2}-\frac{2(x+2)}{x+2} \geq 0 \Rightarrow \frac{x-9}{x+2} \geq 0
$$

Case I: $x-9 \geq 0 \& x+2>0$, giving $x \geq 9$. Case II: $x-9 \leq 0 \& x+2<0$, giving $x<-2$. Solution set: $(-\infty,-2) \cup[9, \infty)$.
$8(f \circ g)(4)=-\frac{31}{16},(g \circ f)(2)=-7,(f \circ f)(1)=11,(g \circ g)(-2)=-2$.

9a $(f \circ g)(x)=\sqrt{6+\frac{3}{4 x}}$, and given that $\operatorname{Dom} f=(-\infty, 2]$ and $\operatorname{Dom} g=(-\infty, 0) \cup(0, \infty)$, we find

$$
\begin{aligned}
\operatorname{Dom}(f \circ g) & =\{x: x \in \operatorname{Dom} g \& g(x) \in \operatorname{Dom} f\} \\
& =\left\{x: x \neq 0 \&-\frac{1}{4 x} \leq 2\right\} \\
& =\left(-\infty,-\frac{1}{8}\right] \cup(0, \infty) .
\end{aligned}
$$

$\mathbf{9 b} \quad(g \circ f)(x)=-\frac{1}{4 \sqrt{6-3 x}}$ with

$$
\begin{aligned}
\operatorname{Dom}(g \circ f) & =\{x: x \in \operatorname{Dom} f \& f(x) \in \operatorname{Dom} g\} \\
& =\{x: x \leq 2 \& 6-3 x \neq 0\} \\
& =(-\infty, 2) .
\end{aligned}
$$

9c $\quad(g \circ g)(x)=-\frac{1}{4(-1 / 4 x)}=x$ with

$$
\begin{aligned}
\operatorname{Dom}(g \circ g) & =\{x: x \in \operatorname{Dom} g \& g(x) \in \operatorname{Dom} g\} \\
& =\{x: x \neq 0 \& g(x) \neq 0\} \\
& =(-\infty, 0) \cup(0, \infty) .
\end{aligned}
$$

