Math 125 Exam \#4 Key (Spring 2020)

1a $\pi / 3$ (the work of drawing the appropriate triangles and circles is excluded from this key)

1b $2 \pi / 3$ (the work of drawing the appropriate triangles and circles is excluded from this key)

2a Setting $y=f(x)$, we solve for x to obtain $f^{-1}(y)=\tan ^{-1}\left(\frac{y+3}{2}\right)$.

2b $\operatorname{Ran} f=(-\infty, \infty), \operatorname{Dom} f^{-1}=(-\infty, \infty), \operatorname{Ran} f^{-1}=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

3 Let $\theta=\cos ^{-1} u$, so $\theta \in[0, \pi]$ is such that $\cos \theta=x / r=u$, and so we have $x=u$ and $r=1$. Now, $y^{2}=r^{2}-x^{2}=1-u^{2}$, and so $|y|=\sqrt{1-u^{2}}$. But $0 \leq \theta \leq \pi$ implies $y \geq 0$, so that $|y|=y$ and we obtain $y=\sqrt{1-u^{2}}$. Finally,

$$
\tan \left(\cos ^{-1} u\right)=\tan \theta=\frac{y}{x}=\frac{\sqrt{1-u^{2}}}{u}
$$

4a Factor: $(2 \cos \theta-1)(\cos \theta+1)=0$, so either $\cos \theta=\frac{1}{2}$ or $\cos \theta=-1$. Solution set: $\left\{\pi, \frac{\pi}{3}, \frac{5 \pi}{3}\right\}$.

4b Either $\cot \theta=-1$ or $\csc \theta=\frac{1}{2}$. The latter equation has no solution, but the former gives the solution set $\left\{\frac{3 \pi}{4}, \frac{7 \pi}{4}\right\}$.

5 From $\cos (3 x)=-\frac{1}{2}$ we obtain $3 x=\frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{8 \pi}{3}, \frac{10 \pi}{3}, \ldots$. Solution set: $\left\{\frac{2 \pi}{9}, \frac{4 \pi}{9}, \frac{8 \pi}{9}\right\}$.

6a Get a common denominator on the left-hand side, giving:

$$
\frac{\cos ^{2} v+(1+\sin v)^{2}}{\cos v(1+\sin v)}=\frac{2+2 \sin v}{\cos v(1+\sin v)}=\frac{2}{\cos v}=2 \sec v
$$

6b The left-hand side LHS is:

$$
\text { LHS }=\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}=\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos \theta \sin \theta}=\frac{1}{\cos \theta \sin \theta}=\sec \theta \csc \theta
$$

7 With the given information we find that $\sin \alpha=\sqrt{3} / 2$ and $\cos \beta=2 \sqrt{2} / 3$. Now,

$$
\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta=\frac{\sqrt{6}}{3}+\frac{1}{6}
$$

and

$$
\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}=\frac{-\sqrt{3}-\frac{1}{2 \sqrt{2}}}{1-\sqrt{3} \cdot \frac{1}{2 \sqrt{2}}}=\frac{2 \sqrt{6}+1}{\sqrt{3}-2 \sqrt{2}}=-\frac{8 \sqrt{2}+9 \sqrt{3}}{5}
$$

8a Work with the left-hand side:

$$
\text { LHS }=\frac{1}{\cos (\alpha-\beta)}=\frac{1}{\cos \alpha \cos \beta+\sin \alpha \sin \beta} \cdot \frac{\sec \alpha \sec \beta}{\sec \alpha \sec \beta}=\text { RHS. }
$$

$\mathbf{8 b} \tan \frac{v}{2}=\frac{\sin v}{1+\cos v}=\frac{\sin v(1-\cos v)}{1-\cos ^{2} v}=\frac{\sin v(1-\cos v)}{\sin ^{2} v}=\frac{1-\cos v}{\sin v}=\csc v-\cot v$.

9 Equation becomes $2 \sin \theta \cos \theta=\cos \theta$, and so either $\cos \theta=0$ or $\sin \theta=\frac{1}{2}$. Solution set: $\left\{\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{\pi}{6}, \frac{5 \pi}{6}\right\}$.

10 Height is $22 \sin 70^{\circ} \approx 20.7 \mathrm{ft}$.

11a Use Law of Sines: $b=0.65, C=100^{\circ}, c=1.29$.

11b Use Law of Sines to find two triangles: $B_{1}=13.4^{\circ}, C_{1}=156.6^{\circ}, c_{1}=6.86$ and $B_{2}=166.6^{\circ}, C_{2}=3.4^{\circ}, c_{2}=1.02$.

11c Requires Law of Cosines, starting with

$$
A=\cos ^{-1}\left(\frac{a^{2}-b^{2}-c^{2}}{-2 b c}\right)=\cos ^{-1}(0.1161)=83.3^{\circ}
$$

Use the law again to get $B=44.1^{\circ}$, and thus $C=52.6^{\circ}$.

12 We have a triangle with base 100, and two angles of $B=40^{\circ}$ and $C=25^{\circ}$ with the base. The angle opposite the base is thus $A=115^{\circ}$, and with the Law of Sines we find the side opposite the angle $B=40^{\circ}$ is $b=70$. Finally, the height of the helicopter is

$$
h=b \sin C=70 \sin 25^{\circ}=29.6 \approx 30 \mathrm{~m} .
$$

