1a $\pi/3$ (the work of drawing the appropriate triangles and circles is excluded from this key)

1b $2\pi/3$ (the work of drawing the appropriate triangles and circles is excluded from this key)

2a Setting
$$y = f(x)$$
, we solve for x to obtain $f^{-1}(y) = \tan^{-1}\left(\frac{y+3}{2}\right)$.

2b Ran $f = (-\infty, \infty)$, Dom $f^{-1} = (-\infty, \infty)$, Ran $f^{-1} = (-\frac{\pi}{2}, \frac{\pi}{2})$.

3 Let $\theta = \cos^{-1} u$, so $\theta \in [0, \pi]$ is such that $\cos \theta = x/r = u$, and so we have x = u and r = 1. Now, $y^2 = r^2 - x^2 = 1 - u^2$, and so $|y| = \sqrt{1 - u^2}$. But $0 \le \theta \le \pi$ implies $y \ge 0$, so that |y| = y and we obtain $y = \sqrt{1 - u^2}$. Finally,

$$\tan(\cos^{-1}u) = \tan\theta = \frac{y}{x} = \frac{\sqrt{1-u^2}}{u}.$$

4a Factor: $(2\cos\theta - 1)(\cos\theta + 1) = 0$, so either $\cos\theta = \frac{1}{2}$ or $\cos\theta = -1$. Solution set: $\{\pi, \frac{\pi}{3}, \frac{5\pi}{3}\}$.

4b Either $\cot \theta = -1$ or $\csc \theta = \frac{1}{2}$. The latter equation has no solution, but the former gives the solution set $\{\frac{3\pi}{4}, \frac{7\pi}{4}\}$.

5 From $\cos(3x) = -\frac{1}{2}$ we obtain $3x = \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{8\pi}{3}, \frac{10\pi}{3}, \cdots$. Solution set: $\{\frac{2\pi}{9}, \frac{4\pi}{9}, \frac{8\pi}{9}\}$.

6a Get a common denominator on the left-hand side, giving:

$$\frac{\cos^2 v + (1 + \sin v)^2}{\cos v (1 + \sin v)} = \frac{2 + 2\sin v}{\cos v (1 + \sin v)} = \frac{2}{\cos v} = 2\sec v$$

6b The left-hand side LHS is:

$$LHS = \frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta} = \frac{\sin^2\theta + \cos^2\theta}{\cos\theta\sin\theta} = \frac{1}{\cos\theta\sin\theta} = \sec\theta\csc\theta.$$

7 With the given information we find that $\sin \alpha = \sqrt{3}/2$ and $\cos \beta = 2\sqrt{2}/3$. Now,

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta = \frac{\sqrt{6}}{3} + \frac{1}{6}$$

and

$$\tan(\alpha - \beta) = \frac{\tan\alpha - \tan\beta}{1 + \tan\alpha \tan\beta} = \frac{-\sqrt{3} - \frac{1}{2\sqrt{2}}}{1 - \sqrt{3} \cdot \frac{1}{2\sqrt{2}}} = \frac{2\sqrt{6} + 1}{\sqrt{3} - 2\sqrt{2}} = -\frac{8\sqrt{2} + 9\sqrt{3}}{5}.$$

8a Work with the left-hand side:

$$LHS = \frac{1}{\cos(\alpha - \beta)} = \frac{1}{\cos\alpha\cos\beta + \sin\alpha\sin\beta} \cdot \frac{\sec\alpha\sec\beta}{\sec\alpha\sec\beta} = RHS.$$

8b
$$\tan \frac{v}{2} = \frac{\sin v}{1 + \cos v} = \frac{\sin v(1 - \cos v)}{1 - \cos^2 v} = \frac{\sin v(1 - \cos v)}{\sin^2 v} = \frac{1 - \cos v}{\sin v} = \csc v - \cot v.$$

9 Equation becomes $2\sin\theta\cos\theta = \cos\theta$, and so either $\cos\theta = 0$ or $\sin\theta = \frac{1}{2}$. Solution set: $\{\frac{\pi}{2}, \frac{3\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6}\}.$

10 Height is $22 \sin 70^\circ \approx 20.7$ ft.

11a Use Law of Sines: b = 0.65, $C = 100^{\circ}$, c = 1.29.

11b Use Law of Sines to find two triangles: $B_1 = 13.4^{\circ}$, $C_1 = 156.6^{\circ}$, $c_1 = 6.86$ and $B_2 = 166.6^{\circ}$, $C_2 = 3.4^{\circ}$, $c_2 = 1.02$.

11c Requires Law of Cosines, starting with

$$A = \cos^{-1}\left(\frac{a^2 - b^2 - c^2}{-2bc}\right) = \cos^{-1}(0.1161) = 83.3^{\circ}.$$

Use the law again to get $B = 44.1^{\circ}$, and thus $C = 52.6^{\circ}$.

12 We have a triangle with base 100, and two angles of $B = 40^{\circ}$ and $C = 25^{\circ}$ with the base. The angle opposite the base is thus $A = 115^{\circ}$, and with the Law of Sines we find the side opposite the angle $B = 40^{\circ}$ is b = 70. Finally, the height of the helicopter is

$$h = b \sin C = 70 \sin 25^{\circ} = 29.6 \approx 30 \text{ m}$$