MATH 125 EXAM #3 Key (Spring 2020)

1 Domain is $(-\infty, \infty)$ and range is $(-\infty, 6)$. Horizontal asymptote: y = 6.

2 Equation becomes $3^{3x^2+4x} = 3^{-1}$, and so $3x^2 + 4x = -1$. This solves to give solution set $\{-\frac{1}{3}, -1\}$.

3 Domain is

$$\{x: 4 - x/3 > 0\} = (-\infty, 12).$$

4 Let y = f(x), so $y = \frac{1}{2}\log(2x) - 9$, giving $\log(2x) = 2y + 18$, and then $10^{2y+18} = 2x$. Solving for x gives $x = \frac{1}{2} \cdot 10^{2y+18}$, and therefore $f^{-1}(y) = \frac{1}{2} \cdot 10^{2y+18}$.

5 From $e^{-2x+3} = 12$ we get $-2x + 3 = \ln 12$, and hence

$$x = \frac{3 - \ln 12}{2}$$

6 With laws of logarithms:

$$\frac{4}{3}\ln(x-4) - \frac{2}{3}\ln(x^2-1).$$

7 Since the logarithm function is one-to-one, we have

$$\ln y = \ln\left(\frac{Cx^2}{x+1}\right) \quad \Rightarrow \quad y = \frac{Cx^2}{x+1}.$$

8a From $\log_5(x+3)(x-1) = 1$ we obtain

$$(x+3)(x-1) = 5 \implies x^2 + 2x - 8 = 0 \implies x = -4, 2$$

However, -4 is an extraneous solution, so the solution set is $\{2\}$.

8b Take the natural logarithm of both sides to get the exact solution:

$$(1+x)\ln 0.3 = (2x-1)\ln 1.7 \Rightarrow x = \frac{\ln 1.7 + \ln 0.3}{2\ln 1.7 - \ln 0.3}$$

8c With the Change-of-Base Formula we get

$$\log_2(x+1) - \frac{\log_2 x}{\log_2 4} = 1 \quad \Rightarrow \quad \log_2(x+1) - \frac{1}{2}\log_2 x = 1 \quad \Rightarrow \quad \log_2 \frac{x+1}{\sqrt{x}} = 1,$$

giving

$$\frac{x+1}{\sqrt{x}} = 2 \quad \Rightarrow \quad x - 2\sqrt{x} + 1 = 0 \quad \Rightarrow \quad (\sqrt{x} - 1)^2 = 0 \quad \Rightarrow \quad x = 1.$$

Solution set is $\{1\}$.

$$9a \quad N(t) = N_0 e^{kt}.$$

9b Let t = 0 for the year 2005, so $N_0 = N(0) = 900,000$, and then $N(t) = 900,000e^{kt}$. Using N(2) = 800,000 gives

$$800,000 = 900,000e^{2k} \Rightarrow k = \frac{1}{2} \ln \frac{8}{9},$$

 \mathbf{SO}

$$N(t) = 900,000e^{(t/2)\ln(8/9)} = 900,000\left(\frac{8}{9}\right)^{t/2}.$$

Population in 2009 is thus

$$N(4) = 900,000 \left(\frac{8}{9}\right)^2 \approx 711,111.$$

10 We're given $u_0 = 100 \,^{\circ}$ C (so u(0) = 100), $T = 20 \,^{\circ}$ C, and also u(15) = 75. With Newton's Law of Cooling:

$$75 = u(15) = 20 + (100 - 20)e^{15k}$$

which gives $k = \frac{1}{15} \ln \frac{55}{80} \approx -0.02498$. Thus the model is

$$u(t) = 20 + 80e^{-0.02498t}.$$

After another 10 minutes (when t = 25), the temperature is

$$u(25) = 20 + 80e^{-0.02498(25)} \approx 62.8 \,^{\circ}\text{C}.$$

11 Convert 0.117° to minutes:

$$(0.117^{\circ})\left(\frac{60'}{1^{\circ}}\right) = 7.02'.$$

Convert 0.02' to seconds, and round to the nearest second:

$$(0.02')\left(\frac{60''}{1'}\right) = 1.2'' \approx 1''$$

Therefore $127.117^{\circ} \approx 127^{\circ} 7' 1''$.

12 The point given lies on a circle of radius $\frac{1}{2}$, so:

$$\sin\theta = \frac{0.4}{1/2} = \frac{4}{5}, \ \cos\theta = \frac{-0.3}{1/2} = -\frac{3}{5}, \ \tan\theta = -\frac{4}{3}, \ \csc\theta = \frac{5}{4}, \ \sec\theta = -\frac{5}{3}, \ \cot\theta = -\frac{3}{4}$$

13
$$\tan \theta = \sin \theta / \cos \theta = \frac{1}{2}, \ \cot \theta = 2, \ \csc \theta = -\sqrt{5}, \ \sec \theta = -\frac{\sqrt{5}}{2}.$$

14 Straight away we have $\sin \theta = \frac{1}{3}$. Now, $\csc \theta > 0$ implies θ is in quadrant QI or QII, while $\cot \theta < 0$ implies θ is in QII or QIV. Thus θ is in QII, and since $\cos \theta < 0$ in QII, we have

$$\cos^2 \theta = 1 - \sin^2 \theta \implies \cos \theta = -\sqrt{1 - \sin^2 \theta} = -\sqrt{1 - (1/3)^2} = -\frac{2\sqrt{2}}{3}.$$

The rest come easily:

$$\tan \theta = \frac{1/3}{-2\sqrt{2}/3} = -\frac{1}{2\sqrt{2}}, \ \ \cot \theta = \frac{1}{\tan \theta} = -2\sqrt{2}, \ \ \sec \theta = \frac{1}{\cos \theta} = -\frac{3}{2\sqrt{2}}.$$