1 Domain is $(-\infty, \infty)$ and range is $(-\infty, 6)$. Horizontal asymptote: $y=6$.

2 Equation becomes $3^{3 x^{2}+4 x}=3^{-1}$, and so $3 x^{2}+4 x=-1$. This solves to give solution set $\left\{-\frac{1}{3},-1\right\}$.

3 Domain is

$$
\{x: 4-x / 3>0\}=(-\infty, 12)
$$

4 Let $y=f(x)$, so $y=\frac{1}{2} \log (2 x)-9$, giving $\log (2 x)=2 y+18$, and then $10^{2 y+18}=2 x$. Solving for $x$ gives $x=\frac{1}{2} \cdot 10^{2 y+18}$, and therefore $f^{-1}(y)=\frac{1}{2} \cdot 10^{2 y+18}$.

5 From $e^{-2 x+3}=12$ we get $-2 x+3=\ln 12$, and hence

$$
x=\frac{3-\ln 12}{2} .
$$

6 With laws of logarithms:

$$
\frac{4}{3} \ln (x-4)-\frac{2}{3} \ln \left(x^{2}-1\right)
$$

7 Since the logarithm function is one-to-one, we have

$$
\ln y=\ln \left(\frac{C x^{2}}{x+1}\right) \Rightarrow y=\frac{C x^{2}}{x+1}
$$

8a $\operatorname{From} \log _{5}(x+3)(x-1)=1$ we obtain

$$
(x+3)(x-1)=5 \Rightarrow x^{2}+2 x-8=0 \Rightarrow x=-4,2
$$

However, -4 is an extraneous solution, so the solution set is $\{2\}$.

8b Take the natural logarithm of both sides to get the exact solution:

$$
(1+x) \ln 0.3=(2 x-1) \ln 1.7 \Rightarrow x=\frac{\ln 1.7+\ln 0.3}{2 \ln 1.7-\ln 0.3}
$$

8c With the Change-of-Base Formula we get

$$
\log _{2}(x+1)-\frac{\log _{2} x}{\log _{2} 4}=1 \Rightarrow \log _{2}(x+1)-\frac{1}{2} \log _{2} x=1 \Rightarrow \log _{2} \frac{x+1}{\sqrt{x}}=1
$$

giving

$$
\frac{x+1}{\sqrt{x}}=2 \Rightarrow x-2 \sqrt{x}+1=0 \Rightarrow(\sqrt{x}-1)^{2}=0 \Rightarrow x=1
$$

Solution set is $\{1\}$.

9a $\quad N(t)=N_{0} e^{k t}$.

9b Let $t=0$ for the year 2005 , so $N_{0}=N(0)=900,000$, and then $N(t)=900,000 e^{k t}$. Using $N(2)=800,000$ gives

$$
800,000=900,000 e^{2 k} \Rightarrow k=\frac{1}{2} \ln \frac{8}{9},
$$

so

$$
N(t)=900,000 e^{(t / 2) \ln (8 / 9)}=900,000\left(\frac{8}{9}\right)^{t / 2}
$$

Population in 2009 is thus

$$
N(4)=900,000\left(\frac{8}{9}\right)^{2} \approx 711,111
$$

10 We're given $u_{0}=100^{\circ} \mathrm{C}$ (so $u(0)=100$ ), $T=20^{\circ} \mathrm{C}$, and also $u(15)=75$. With Newton's Law of Cooling:

$$
75=u(15)=20+(100-20) e^{15 k}
$$

which gives $k=\frac{1}{15} \ln \frac{55}{80} \approx-0.02498$. Thus the model is

$$
u(t)=20+80 e^{-0.02498 t}
$$

After another 10 minutes (when $t=25$ ), the temperature is

$$
u(25)=20+80 e^{-0.02498(25)} \approx 62.8^{\circ} \mathrm{C}
$$

11 Convert $0.117^{\circ}$ to minutes:

$$
\left(0.117^{\circ}\right)\left(\frac{60^{\prime}}{1^{\circ}}\right)=7.02^{\prime}
$$

Convert $0.02^{\prime}$ to seconds, and round to the nearest second:

$$
\left(0.02^{\prime}\right)\left(\frac{60^{\prime \prime}}{1^{\prime}}\right)=1.2^{\prime \prime} \approx 1^{\prime \prime}
$$

Therefore $127.117^{\circ} \approx 127^{\circ} 7^{\prime} 1^{\prime \prime}$.

12 The point given lies on a circle of radius $\frac{1}{2}$, so:

$$
\sin \theta=\frac{0.4}{1 / 2}=\frac{4}{5}, \quad \cos \theta=\frac{-0.3}{1 / 2}=-\frac{3}{5}, \quad \tan \theta=-\frac{4}{3}, \quad \csc \theta=\frac{5}{4}, \quad \sec \theta=-\frac{5}{3}, \quad \cot \theta=-\frac{3}{4} .
$$

$13 \tan \theta=\sin \theta / \cos \theta=\frac{1}{2}, \cot \theta=2, \csc \theta=-\sqrt{5}, \sec \theta=-\frac{\sqrt{5}}{2}$.

14 Straight away we have $\sin \theta=\frac{1}{3}$. Now, $\csc \theta>0$ implies $\theta$ is in quadrant QI or QII, while $\cot \theta<0$ implies $\theta$ is in QII or QIV. Thus $\theta$ is in QII, and since $\cos \theta<0$ in QII, we have

$$
\cos ^{2} \theta=1-\sin ^{2} \theta \Rightarrow \cos \theta=-\sqrt{1-\sin ^{2} \theta}=-\sqrt{1-(1 / 3)^{2}}=-\frac{2 \sqrt{2}}{3}
$$

The rest come easily:

$$
\tan \theta=\frac{1 / 3}{-2 \sqrt{2} / 3}=-\frac{1}{2 \sqrt{2}}, \quad \cot \theta=\frac{1}{\tan \theta}=-2 \sqrt{2}, \quad \sec \theta=\frac{1}{\cos \theta}=-\frac{3}{2 \sqrt{2}} .
$$

