Math 125 Exam \#2 Key (Spring 2020)

1 In general

$$
(x+y)^{n}=\sum_{k=0}^{12}\binom{12}{k}(2 x)^{k},
$$

so the coefficient of x^{3} is

$$
\binom{12}{3} 2^{3}=1760
$$

$2 f(x)=x^{3}(x+1)^{2}(x-5)$.

3 Must have $f(x)=c(x+4)(x+1)(x-2)$ with c such that $f(0)=16$. We have

$$
c(0+4)(0+1)(0-2)=f(0)=16 \Rightarrow-8 c=16 \Rightarrow c=-2
$$

so $f(x)=-2(x+4)(x+1)(x-2)$.

4 Possible rational zeros are $\pm 1, \pm 2, \pm \frac{1}{3}, \pm \frac{2}{3}$. Synthetic division shows -1 to be a zero:

$$
\begin{array}{l|rrrr|r}
-1 & 3 & 4 & 8 & 2 \\
& -3 & -1 & -6 & -2 \\
& 3 & 1 & 6 & 2 & 0
\end{array} \longrightarrow 3 x^{3}+x^{2}+6 x+2
$$

So
$f(x)=(x+1)\left(3 x^{3}+x^{2}+6 x+2\right)=(x+1)\left[x^{2}(3 x+1)+2(3 x+1)\right]=(x+1)(3 x+1)\left(x^{2}+2\right)$ is the factorization of $f(x)$ over the reals, and the real zeros of f are -1 and $-\frac{1}{3}$.

5 The possible rational zeros of $f(x)=2 x^{4}+7 x^{3}+x^{2}-7 x-3$ are $\pm 1, \pm 3, \pm \frac{1}{2}, \pm \frac{3}{2}$. Synthetic division shows 1 to be a zero:

1) | 2 | 7 | 1 | -7 | -3 |
| ---: | ---: | ---: | ---: | ---: |
| | 2 | 9 | 10 | 3 |
| 2 | 9 | 10 | 3 | 0 |

Thus $f(x)=(x-1)\left(2 x^{3}+9 x^{2}+10 x+3\right)$, and since $g(x)=2 x^{3}+9 x^{2}+10 x+3$ has zero -1 , so that synthetic division gives $g(x)=(x+1)\left(2 x^{2}+7 x+3\right)$, we get

$$
f(x)=(x-1)(x+1)\left(2 x^{2}+7 x+3\right)=(x+1)(x-1)(x+3)(2 x+1) .
$$

Equation is thus $(x+1)(x-1)(x+3)(2 x+1)=0$, so solution set is $\left\{-1,1,-3,-\frac{1}{2}\right\}$.

6 Another zero must be $-3 i$ since the polynomial function has real coefficients. This means

$$
(x-3 i)(x+3 i)=x^{2}+9
$$

is a factor of $H(x)$. With long division we have

$$
\frac{H(x)}{x^{2}+9}=3 x^{2}+5 x-2
$$

and so

$$
H(x)=\left(x^{2}+9\right)\left(3 x^{2}+5 x-2\right)=\left(x^{2}+9\right)(3 x-1)(x+2) .
$$

The zeros of H are $3 i,-3 i, \frac{1}{3},-2$.

7a Domain of U is $\left(-\infty, \frac{1}{4}\right) \cup\left(\frac{1}{4}, \infty\right)$.

7b Solving $U(x)=0$ gets us the x-intercept $-\frac{7}{2}$ (recall that $\frac{1}{4}$ is not in the domain). The y-intercept is $U(0)=7$.

7c For $x \neq \frac{1}{4}$ we find $U(x)=2 x+7$, which means no vertical asymptote.

7d For $x \neq \frac{1}{4}$ we find $U(x)=2 x+7$, which means $y=2 x+7$ is an oblique asymptote.

8a Write as $(x+8)(x-2)<0$, which has solution set $(-8,2)$.

8b Write as follows:

$$
\frac{5}{x-1}-\frac{3}{x+2} \geq 0 \Rightarrow R(x)=\frac{2 x+13}{(x-1)(x+2)} \geq 0
$$

Zeros of the numerator and denominator are $-\frac{13}{2},-2$, and 1 , which partitions the real line into intervals $\left(-\infty,-\frac{13}{2}\right),\left(-\frac{13}{2},-2\right),(-2,1)$, and $(1, \infty)$. Since $R(-10)<0, R(-3)>0, R(0)<0$, and $R(2)>0$, the Intermediate Value Theorem implies that $R(x)>0$ on $\left(-\frac{13}{2},-2\right)$ and $(1, \infty)$. Thus our inequality $R(x) \geq 0$ has solution set $\left[-\frac{13}{2},-2\right) \cup(1, \infty)$.
$9(f \circ g)(4)=-5,(g \circ f)(2)=-2,(f \circ f)(1)=19,(g \circ g)(-2)=-2$.

10a We have

$$
(f \circ g)(x)=f(g(x))=f(3 / x)=\sqrt{6 / x-12}
$$

with domain $\left(0, \frac{1}{2}\right]$.

10b Here

$$
(g \circ f)(x)=g(f(x))=g(\sqrt{2 x-12})=\frac{3}{\sqrt{2 x-12}}
$$

with domain $(6, \infty)$.

10c Here

$$
(g \circ g)(x)=g(g(x))=g(3 / x)=\frac{3}{3 / x}=x
$$

with domain $(-\infty, 0) \cup(0, \infty)$.

11a Solve $y=9-3 x$ for x to get $x=\frac{1}{3}(9-y)$, so $f^{-1}(y)=\frac{1}{3}(9-y)$. This can also be written as $f^{-1}(x)=\frac{1}{3}(9-x)$.

11b Let $y=g(x)$. Then, for $x<0$,

$$
y=2+\frac{3}{x^{2}} \Leftrightarrow x^{2}=\frac{3}{y-2} \Leftrightarrow|x|=\sqrt{\frac{3}{y-2}} \Leftrightarrow x=-\sqrt{\frac{3}{y-2}},
$$

where $\sqrt{x^{2}}=|x|=-x$ since $x<0$ is given. Since $y=g(x)$ if and only if $x=g^{-1}(y)$, we now have

$$
g^{-1}(y)=-\sqrt{\frac{3}{y-2}},
$$

or equivalently

$$
g^{-1}(x)=-\sqrt{\frac{3}{x-2}}
$$

