$1 \quad f(-3)=\sqrt{6}$ and $f(x+1)=\sqrt{(x+1)^{2}+(x+1)}$.

2a Domain of p is $(1, \infty)$.

2b Domain of h is $\{z: z+3 \geq 0$ and $z \neq 2\}=[-3,2) \cup(2, \infty)$

3a We have

$$
(f \cdot g)(x)=\left(1+\frac{1}{2 x}\right)\left(\frac{x+2}{x+4}\right),
$$

with domain $\{x: x \neq-4,0\}$.

3b We have

$$
(f / g)(x)=\frac{1+\frac{1}{2 x}}{\frac{x+2}{x+4}}=\left(1+\frac{1}{2 x}\right)\left(\frac{x+4}{x+2}\right),
$$

with domain $\{x: x \neq-4,-2,0\}$.

4a Since $f(-x)=(-x)^{3}-10=-x^{3}-10 \neq \pm f(x), f$ is neither.

4b Since $g(-x)=\frac{(-x)^{3}}{3(-x)^{5}-9(-x)}=\frac{x^{3}}{3 x^{5}-9 x}=g(x), g$ is even.

5 Definition of f :

$$
f(x)= \begin{cases}-2 x-6, & x \in[-5,-2] \\ x, & x \in(-2,0) \\ -x / 5+4, & x \in[0,5]\end{cases}
$$

6a Cut the wire into lengths $4 x$ and $10-4 x$. With the $4 x$ piece make a square with sides of length x, and with the $10-4 x$ piece make a circle. The area of the square is x^{2}, and the area of the circle (which has circumference $10-4 x$) is $(5-2 x)^{2} / \pi$. Total area is

$$
A(x)=\frac{(5-2 x)^{2}}{\pi}+x^{2}
$$

6b Domain of A is $\{x: 0<4 x<10\}$, or $\left(0, \frac{5}{2}\right)$.

7 Solve $G(x)=0$, or $x^{2}+8 x+12=0$, by factoring to get the zeros -6 and -2 , which are also the x-intercepts.

8 Solve $H(x)=0$, which becomes $\left(x^{3}-8\right)\left(x^{3}-1\right)=0$, and hence

$$
(x-2)\left(x^{2}+2 x+4\right)(x-1)\left(x^{2}+x+1\right)=0 .
$$

Thus $x=1$ and $x=2$. But also $x^{2}+2 x+4=0$ gives $x=-1 \pm i \sqrt{3}$, and $x^{2}+x+1=0$ gives $x=-\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$. Set of zeros are: $\left\{1,2,-1 \pm i \sqrt{3},-\frac{1}{2} \pm i \frac{\sqrt{3}}{2}\right\}$.

9 Inequality is $6 x^{2}-5 x-6 \leq 0$, and since $6 x^{2}-5 x-6=0$ when $x=-\frac{2}{3}$, $\frac{3}{2}$, and $y=6 x^{2}-5 x-6$ represents a parabola that opens upward, the solution set to the inequality is $\left[-\frac{2}{3}, \frac{3}{2}\right]$.

10 Let x be the length of the rectangle and y the width, as shown below. Semicircles of diameter y are attached to the width sides of the rectangle. The two semicircles together have the circumference of a whole circle of diameter y, which we know is πy. The inside perimeter of the track is thus $2 x+\pi y=1500$, and hence $y=\frac{1500-2 x}{\pi}$. Now, the area of the rectangle is $A=x y$, or, as a function of x,

$$
A(x)=x\left(\frac{1500-2 x}{\pi}\right)=-\frac{2}{\pi} x^{2}+\frac{1500}{\pi} x .
$$

This graphs as a parabola that opens downward with vertex at

$$
x=-\frac{b}{2 a}=-\frac{1500}{\pi}\left(-\frac{\pi}{4}\right)=375 .
$$

Dimensions of the rectangle, in meters, should thus be $375 \times 750 / \pi$ to maximize area.

11 Write $|1-2 t|=2$, so either $1-2 t=2$ or $1-2 t=-2$. Solution set: $\left\{-\frac{1}{2}, \frac{3}{2}\right\}$.

12 Write $|x+5|>25$, so either $x+5>25$ or $x+5<-25$. Solution set: $(-\infty,-30) \cup(20, \infty)$.

