Math 125 Exam #4 Key (Spring 2019)

1a
$$-\pi/5$$

- **1b** Undefined.
- 1c $\sqrt{5}/2$
- 1d We have

$$\theta = \cos^{-1}\left(\sin\frac{7\pi}{6}\right) \implies \cos\theta = \sin\frac{7\pi}{6} = \cos\left(\frac{\pi}{2} - \frac{7\pi}{6}\right) = \cos\frac{2\pi}{3} \implies \theta = \frac{2\pi}{3}.$$

- **2a** We have $\sin \theta = \pm \frac{1}{\sqrt{2}}$, and so $\theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$.
- **2b** So $\tan \theta = -1$, giving $\theta = \frac{3\pi}{4}, \frac{7\pi}{4}$.
- Write $4 + 4\sin\theta = 1 \sin^2\theta$, so $(\sin\theta + 3)(\sin\theta + 1) = 0$, which implies $\sin\theta = -1$, or $\theta = \frac{3\pi}{2}$.
- **3a** We have

$$1 - \frac{\sin^2 \theta}{1 - \cos \theta} = 1 - \frac{1 - \cos^2 \theta}{1 - \cos \theta} = 1 - \frac{(1 - \cos \theta)(1 + \cos \theta)}{1 - \cos \theta} = 1 - (1 + \cos \theta) = -\cos \theta.$$

3b We have

$$\sin\theta\tan\theta = \frac{\sin^2\theta}{\cos\theta} = \frac{1-\cos^2\theta}{\cos\theta} = \frac{1}{\cos\theta} - \frac{\cos^2\theta}{\cos\theta} = \sec\theta - \cos\theta.$$

- 4 The expression becomes $\cos\left(\frac{5\pi}{12} + \frac{7\pi}{12}\right) = \cos \pi = -1$.
- **5** With a half-angle identity,

$$\cos 22.5^{\circ} = \sqrt{\frac{1 + \cos 45^{\circ}}{2}} = \sqrt{\frac{1 + 1/\sqrt{2}}{2}} = \frac{\sqrt{2 + \sqrt{2}}}{2}.$$

6
$$\cos^4 \theta - \sin^4 \theta = (\cos^2 \theta - \sin^2 \theta)(\cos^2 \theta + \sin^2 \theta) = \cos^2 \theta - \sin^2 \theta = \cos(2\theta).$$

7 This sets up a right triangle with legs of length 12 and 3, and so if the angle of depression is θ , we have

$$\tan \theta = -\frac{3}{12} \implies \theta = \tan^{-1}(-0.25) = -14.0^{\circ}.$$

8 Let h be the height of the monument. Then

$$\tan 35.1^{\circ} = \frac{h}{789} \implies h = 789 \tan 35.1^{\circ} \approx 554.5 \text{ ft}$$

9a $B = 110^{\circ}$ is immediate, and with the Law of Sines we find that b = 3.68 and c = 1.34.

9b Use the Law of Sines again to get one triangle with a = 6.21, $A = 86.5^{\circ}$, $C = 53.5^{\circ}$, and another triangle with a = 1.45, $A = 13.5^{\circ}$, $C = 126.5^{\circ}$.

9c Use Law of Cosines twice to get $A = 33.6^{\circ}$, $B = 62.2^{\circ}$, $C = 84.3^{\circ}$.

10 Use the Law of Cosines to find that the guy wires should be 520.1 ft and 499.5 ft.