Math 125 Exam \#3 Key (Spring 2019)

1 Domain is $(-\infty, \infty)$ and range is $(-\infty, 2)$.

2 Equation becomes $e^{x^{2}+4 x}=e^{12}$, and so $x^{2}+4 x=12$. This solves to give solution set $\{-6,2\}$.

3 Domain is

$$
\left\{x: \frac{3}{2 x-3}>0\right\}=\{x: x>3 / 2\}=(3 / 2, \infty)
$$

4 We have $e^{-0.3 x}=9 / 2$, giving $-0.3 x=\ln (9 / 2)$, and hence $x=-\frac{10}{3} \ln \frac{9}{2}$.

5 Find h such that $400=760 e^{-0.145 h}$, which implies $-0.145 h=\ln (400 / 760)$, and hence

$$
h=-\frac{1}{0.145} \ln \left(\frac{10}{19}\right) \approx 4.43 \mathrm{~km} .
$$

6 With laws of logarithms:

$$
\log _{2} \frac{(x-3)^{3}}{(2 x-1)(x+1)}
$$

7a We have

$$
\log _{6}(x+4)(x+3)=1 \Rightarrow(x+4)(x+3)=6 \quad \Rightarrow \quad x=-6,-1
$$

The value -6 is an extraneous solution, and so the solution set is $\{-1\}$.

7b Taking logarithms of both sides:

$$
x \ln (3 / 5)=(1-x) \ln 7 \Rightarrow x=\frac{\ln 7}{\ln (3 / 5)+\ln 7}=\frac{\ln 7}{\ln (21 / 5)}
$$

$8 \mathbf{a} \quad A(11)=100 e^{-0.087(11)} \approx 38.4 \mathrm{~g}$.

8b Find t for which $A(t)=\frac{1}{2} A_{0}$:

$$
\frac{1}{2} A_{0}=A_{0} e^{-0.087 t} \Rightarrow e^{-0.087 t}=\frac{1}{2} \Rightarrow-0.087 t=\ln (1 / 2) \Rightarrow t \approx 7.97 \text { days. }
$$

Note that the value of A_{0} is irrelevant.
$9140^{\circ} 32^{\prime} 49^{\prime \prime}$.
$10 \sin \theta=-\frac{12}{13}, \cos \theta=\frac{5}{13}, \tan \theta=-\frac{12}{5}, \csc \theta=-\frac{13}{12}, \sec \theta=\frac{13}{5}, \cot \theta=-\frac{5}{12}$.
$11 \cos \theta=-\frac{\sqrt{5}}{3}, \tan \theta=\frac{2}{\sqrt{5}}, \csc \theta=-\frac{3}{2}, \sec \theta=-\frac{3}{\sqrt{5}}, \cot \theta=\frac{\sqrt{5}}{2}$.

12 Domain is $(-\infty, \infty)$, and range is $[-3,5]$.

13 Domain is

$$
\left\{x: \frac{3 \pi}{2} x \neq \frac{\pi}{2}+k \pi\right\}=\left\{x: x \neq \frac{2 k+1}{3}\right\},
$$

where k is any integer. Range $(-\infty,-3] \cup[3, \infty)$.
$14 y=6 \sin (10 x)$.

