Math 125 Exam \#2 Key (Spring 2019)

1 In general

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}
$$

so

$$
\begin{aligned}
(2 x+3)^{5} & =\sum_{k=0}^{5}\binom{5}{k}(2 x)^{5-k} 3^{k} \\
& =(2 x)^{5}+5(2 x)^{4}(3)+10(2 x)^{3}(3)^{2}+10(2 x)^{2}(3)^{3}+5(2 x)(3)^{4}+3^{5} \\
& =32 x^{5}+240 x^{4}+720 x^{3}+1080 x^{2}+810 x+243 .
\end{aligned}
$$

$2 f(x)=(x+1)(x+3)^{2}(x-5)$.

3a -4 (multiplicity 2), -3 (multiplicity 5).

3b The graph of f touches the x-axis at -4 and crosses it at -3 .

3c There are at most 6 turning points, since the polynomial is of degree 7 .

3d $f(x) \rightarrow-\infty$ as $x \rightarrow+\infty$, and $f(x) \rightarrow+\infty$ as $x \rightarrow-\infty$.

4 Possible rational zeros are $\pm 1, \pm 2, \pm 4, \pm 8$. Synthetic division shows 2 to be a zero:

So $f(x)=(x-2)\left(x^{3}+x^{2}-4 x-4\right)$. For $g(x)=x^{3}+x^{2}-4 x-4$ synthetic division shows 2 to be a zero:

$$
\begin{array}{c|rrr|r}
2 & 1 & 1 & -4 & -4 \\
& 2 & 6 & 4 \\
\hline & 3 & 2 & 0
\end{array} \longrightarrow x^{2}+3 x+2 .
$$

So

$$
\begin{aligned}
f(x) & =(x-2) \cdot(x-2)\left(x^{2}+3 x+2\right) \\
& =(x-2)^{2}(x+1)(x+2)
\end{aligned}
$$

and the zeros of f are $-1,2$, and -2 .

5 The possible rational zeros of $f(x)=2 x^{3}-11 x^{2}+10 x+8$ are $\pm 1, \pm 2, \pm 4, \pm 8, \pm \frac{1}{2}$. Synthetic division shows 2 to be a zero:

$$
\begin{array}{r|rrr|r}
2 & 2 & -11 & 10 & 8 \\
& 4 & -14 & -8 \\
\hline 2 & -7 & -4 & 0
\end{array}
$$

Thus $f(x)=(x-2)\left(2 x^{2}-7 x-4\right)=(x-2)(x-4)(2 x+1)$, and equation becomes

$$
(x-2)(x-4)(2 x+1)=0
$$

The solution set can now be seen to be $\left\{-\frac{1}{2}, 2,4\right\}$.

6 Another zero must be $1-3 i$ since the polynomial function has real coefficients. This means that

$$
[x-(1+3 i)][x-(1-3 i)]=x^{2}-2 x+10
$$

is a factor of $f(x)$. With long division we have

$$
\frac{f(x)}{x^{2}-2 x+10}=x^{2}-5 x-6,
$$

and so $f(x)=\left(x^{2}-2 x+10\right)\left(x^{2}-5 x-6\right)$. The other zeros of f must be the zeros of $x^{2}-5 x-6$. Since $x^{2}-5 x-6=(x-6)(x+1)$ has zeros -1 and 6 , the zeros of f are $1+3 i, 1-3 i,-1,6$.

7a Domain of T is

$$
\left\{x: 2 x^{2}+7 x+5 \neq 0\right\}=\left\{x: x \neq-\frac{5}{2},-1\right\} .
$$

7b The x-intercepts are $(-5,0)$ and $(-1,0)$, and the y-intercept is $(0,1)$.

7c $x=-\frac{5}{2}$

7d $y=\frac{1}{2}$ is the horizontal asymptote. No oblique asymptote.

8a We have

$$
x^{3}-2 x^{2}-3 x>0 \Rightarrow x(x-3)(x+1)>0
$$

which is satisfied for $x \in(-1,0) \cup(3, \infty)$.

8b We have

$$
\frac{x-4}{2 x+4} \geq 1 \Rightarrow \frac{x-4}{2 x+4}-\frac{2 x+4}{2 x+4} \geq 0 \Rightarrow-\frac{x+8}{2 x+4} \geq 0 \Rightarrow \frac{x+8}{x+2} \leq 0
$$

There are two cases: either $x+8 \geq 0$ and $x+2<0$, or $x+8 \leq 0$ and $x+2>0$. The first case gives $-8 \leq x<-2$, while the second case is impossible. Solution set: $[-8,-2)$.
$9(f \circ g)(4)=\sqrt{13},(g \circ f)(2)=3 \sqrt{3},(f \circ f)(1)=\sqrt{1+\sqrt{2}},(g \circ g)(0)=0$.

10a We have $(f \circ g)(x)=f(g(x))=(\sqrt{x-1})^{2}+1=x$. Domain:

$$
\begin{aligned}
\operatorname{Dom} f \circ g & =\{x: x \in \operatorname{Dom} g \& g(x) \in \operatorname{Dom} f\} \\
& =\{x: x \geq 1 \& \sqrt{x-1} \in \mathbb{R}\} \\
& =[1, \infty)
\end{aligned}
$$

10b We have $(g \circ f)(x)=g(f(x))=g\left(x^{2}+1\right)=\sqrt{x^{2}}=|x|$. Domain:

$$
\begin{aligned}
\operatorname{Dom} g \circ f & =\{x: x \in \operatorname{Dom} f \& f(x) \in \operatorname{Dom} g\} \\
& =\left\{x: x \in \mathbb{R} \& x^{2}+1 \geq 1\right\} \\
& =(-\infty, \infty)
\end{aligned}
$$

10c We have $(g \circ g)(x)=g(g(x))=\sqrt{\sqrt{x-1}-1}$. Domain:

$$
\begin{aligned}
\operatorname{Dom} g \circ g & =\{x: x \in \operatorname{Dom} g \& g(x) \in \operatorname{Dom} g\} \\
& =\{x: x \geq 1 \& \sqrt{x-1} \geq 1\} \\
& =\{x: x \geq 1 \& x \geq 2\} \\
& =[2, \infty)
\end{aligned}
$$

11a Solve $y=x^{3}+1$ for x to get $x=\sqrt[3]{y-1}$, so $f^{-1}(y)=\sqrt[3]{y-1}$. This can also be written as $f^{-1}(x)=\sqrt[3]{x-1}$.

11b Let $y=g(x)$. Then

$$
y=\frac{x^{2}-4}{2 x^{2}} \Leftrightarrow 2 x^{2} y=x^{2}-4 \Leftrightarrow x^{2}=\frac{4}{1-2 y} \Leftrightarrow x=\sqrt{\frac{4}{1-2 y}},
$$

where $\sqrt{x^{2}}=|x|=x$ since $x>0$ is given. Since $y=g(x)$ if and only if $x=g^{-1}(y)$, we now have

$$
g^{-1}(y)=\sqrt{\frac{4}{1-2 y}}
$$

or equivalently

$$
g^{-1}(x)=\sqrt{\frac{4}{1-2 x}}
$$

