MATH 125 ExaM #4 KEY (SPRING 2014)
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2 Amplitude is 1/2, period is 27/3. If we write
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we can see that the phase shift is 7/6.

3 We have
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4 With a half-angle identity we obtain
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= sec’ z + 2tanz sec x + tan® r = (sec ¥ + tanz)?.
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6b Lett = sin’l(%), so that sint = 1—10. Thus t is the angle depicted in the triangle below,

and so
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7a Divide by 2 and then square both sides to obtain
3
cos’z 4+ 2sinz cosx + sinz = 3

Since cos? z + sin?z = 1, we then get
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Note: two other solutions to sin2x = % in [0,27) are =
T 5w

solutions; that is, they don’t satisfy the original equation. Solution set is {57 o

and 1%, but these are extraneous

7b  We have
2secrtanz+2secr+tanzr+1 = (2secz)(tanz+1)+ (tanx+1) = (tanz+1)(2secz+1) =0,

so that either tanxz + 1 =0 or 2secx + 1 = 0. From the first equation we get tanxz = —1, and
3m 7w 3n Tm

so x = =F, F. The second equation has no solution. Thus the solution set is =, F ;.

8a By the Law of Sines:
asinC 56.2sin(46°32")

A — _ ~ 1.85.
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There is no solution.

8b We have

B sinl0°
Slilo :sm3 — sin B = 0.57883

= sin~'(sin B) = sin"!(0.57883) = 35.366°
= sin B = sin 35.366°.

One solution to this equation is of course B; = 35.366°; however B could also be the Quadrant
IT angle

By = 180° — sin™1(0.57883) = 144.63°

(see very pretty picture below).
For the angle By we get (' = 134.634°, and then by the Law of Cosines we obtain

cd =a®+b* — 2abcos C; = 3% +10* — 2(3)(10) cos 134.634° = 151.156 = ¢; = 12.29.
So one possible triangle (rounding to the nearest tenth) has
By =354°, (C}=134.6°, ¢ =12.3.
For the angle By we get Cy = 25.370°, and then by the Law of Cosines we obtain
c5 =a®+b* — 2abcos Cy = 3% + 10* — 2(3)(10) cos 25.370° = 54.786 = ¢; = 7.40.
So another possible triangle has

BQ = 144.607 CQ = 25.40, Cy = 7.4.
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8c The Law of Cosines is necessary here:
A =a’+b*—2abcosC = 6°>=4>+3>—2(4)(3)cosC
= cosC =—11/24
= O =cos '(—11/24) ~ 117.28°.
And
b’ =a® +c* —2accos B = 3% =42 +6%—2(4)(6)cos B
= cos B =43/48
= B =cos '(43/48) ~ 26.38°.
Finally, A = 180° — 26.38° — 117.28° = 36.34°. To the nearest tenth we have:
A=363°, B=264°, C=117.3°



