Math 125 Exam \#1 Key (Spring 2013)

1a $\sqrt{(-2-(-6))^{2}+(5-(-1))^{2}}=\sqrt{4^{2}+6^{2}}=\sqrt{52}=2 \sqrt{13}$
$\mathbf{1 b}\left(\frac{-2+(-6)}{2}, \frac{5+(-1)}{2}\right)=(-4,2)$

2 Center is $(-4,2)$ and radius is $3 / 2$, so equation is $(x+4)^{2}+(y-2)^{2}=9 / 4$.

3 Writing the equation as $y=\frac{2}{5} x-\frac{1}{5}$ makes it clear that slope is $m=\frac{2}{5}$. Intercepts are $\left(0,-\frac{1}{5}\right)$ and $\left(\frac{1}{2}, 0\right)$.

(Actually the original problem was $2 x-5 x=1$, which though a typo is nevertheless a valid problem encountered in homework so it's fine if anyone worked it out as given. In this case the equation can be written as simply $x=-1 / 3$, which has undefined slope, an x-intercept at $(-1 / 3,0)$, and a graph that is just a vertical line containing the point $(-1 / 3,0)$. There is no y-intercept.)

4 We have

$$
\begin{aligned}
f(0) & =-0^{2}+3(0)-2=-2 \\
f(4) & =-4^{2}+3(4)-2=-6 \\
f(-x) & =-(-x)^{2}+3(-x)-2=-x^{2}-3 x-2 .
\end{aligned}
$$

5a We have

$$
\operatorname{Dom}(f)=\{x: x+7 \neq 0\}=\{x: x \neq-7\}=(-\infty,-7) \cup(-7, \infty)
$$

5b We have

$$
\operatorname{Dom}(g)=\{x: 4-5 x \geq 0\}=\{x: 5 x \leq 4\}=\{x: x \leq 4 / 5\}=(-\infty, 4 / 5]
$$

5c We have

$$
\operatorname{Dom}(h)=\{x: x-8 \neq 0 \& x+9 \geq 0\}=\{x: x \neq 8 \& x \geq-9\}=[-9,8) \cup(8, \infty)
$$

6a Finding $f g$:

$$
(f g)(x)=f(x) g(x)=\frac{2 x-5}{x+7} \cdot \sqrt{4-5 x}=\frac{(2 x-5) \sqrt{4-5 x}}{x+7}
$$

Now for the domain:

$$
\begin{aligned}
\operatorname{Dom}(f g) & =\operatorname{Dom}(f) \cap \operatorname{Dom}(g)=((-\infty,-7) \cup(-7, \infty)) \cap(-\infty, 4 / 5] \\
& =(-\infty,-7) \cup(-7,4 / 5]
\end{aligned}
$$

6b Finding h / f :

$$
(h / f)(x)=h(x) / f(x)=\frac{\sqrt{x+9}}{x-8} \div \frac{2 x-5}{x+7}=\frac{(x+7) \sqrt{x+9}}{(x-8)(2 x-5)} .
$$

Now for the domain:

$$
\begin{aligned}
\operatorname{Dom}(h / f) & =\{x: x \in \operatorname{Dom}(f) \cap \operatorname{Dom}(h) \& f(x) \neq 0\} \\
& =\{x: x \in((-\infty,-7) \cup(-7, \infty)) \cap([-9,8) \cup(8, \infty)) \& f(x) \neq 0\} \\
& =\{x: x \in[-9,-7) \cup(-7,8) \cup(8, \infty) \& x \neq 5 / 2\} \\
& =[-9,-7) \cup(-7,5 / 2) \cup(5 / 2,8) \cup(8, \infty) .
\end{aligned}
$$

6c Finding $g \circ g$:

$$
(g \circ g)(x)=g(g(x))=g(\sqrt{4-5 x})=\sqrt{4-5 \sqrt{4-5 x}}
$$

Now for the domain:

$$
\begin{aligned}
\operatorname{Dom}(g \circ g) & =\{x: x \in \operatorname{Dom}(g) \& g(x) \in \operatorname{Dom}(g)\} \\
& =\{x: x \in(-\infty, 4 / 5] \& \sqrt{4-5 x} \in(-\infty, 4 / 5]\},
\end{aligned}
$$

where

$$
\sqrt{4-5 x} \in(-\infty, 4 / 5] \Leftrightarrow \sqrt{4-5 x} \leq 4 / 5 \Leftrightarrow 0 \leq 4-5 x \leq 16 / 25 \Leftrightarrow \frac{84}{125} \leq x \leq \frac{4}{5},
$$

and so

$$
\operatorname{Dom}(g \circ g)=\left\{x: x \in\left(-\infty, \frac{4}{5}\right] \& x \in\left[\frac{84}{125}, \frac{4}{5}\right]\right\}=\left[\frac{84}{125}, \frac{4}{5}\right] .
$$

7a We have

$$
(F \circ G)(x)=F\left(x^{2}-5\right)=\sqrt{\left(x^{2}-5\right)+5}=\sqrt{x^{2}}=|x|,
$$

with

$$
\begin{aligned}
\operatorname{Dom}(F \circ G) & =\{x: x \in \operatorname{Dom}(G) \& G(x) \in \operatorname{Dom}(F)\} \\
& =\left\{x: x \in(-\infty, \infty) \& x^{2}-5 \in[-5, \infty)\right\} \\
& =\left\{x: x^{2}-5 \geq-5\right\}=\left\{x: x^{2} \geq 0\right\}=(-\infty, \infty)
\end{aligned}
$$

7b We have

$$
(G \circ F)(x)=G(\sqrt{x+5})=(\sqrt{x+5})^{2}-5=(x+5)-5=x
$$

with

$$
\begin{aligned}
\operatorname{Dom}(G \circ F) & =\{x: x \in \operatorname{Dom}(F) \& F(x) \in \operatorname{Dom}(G)\} \\
& =\{x: x \in[-5, \infty) \& \sqrt{x+5} \in(-\infty, \infty)\} \\
& =\{x: x \in[-5, \infty) \& x \in[-5, \infty)\}=[-5, \infty) .
\end{aligned}
$$

8 Let $g(x)=\sqrt{3 x+7}$ and $f(x)=1 / x$. Another possibility: $g(x)=3 x+7$ and $f(x)=1 / \sqrt{x}$.
$9 \varphi(-5)=1, \varphi(0)=1, \varphi(1)=3, \varphi(3)=5$.

10a $\operatorname{Dom}(H)=(-\infty, \infty)$ and $\operatorname{Ran}(H)=(-\infty,-2] \cup[3, \infty)$.

10b H is a piecewise-defined function as follows:

$$
H(x)= \begin{cases}x, & \text { if } x \leq-2 \\ 3, & \text { if }-2<x \leq 3 \\ \frac{3}{2} x-\frac{3}{2}, & \text { if } x \geq 3\end{cases}
$$

11 Substituting $-x$ for x yields $y^{3}=2(-x)^{2}$, which is equivalent to the original equation $y^{3}=2 x^{2}$ and so there is symmetry about the y-axis.

Substituting $-y$ for y yields $-y^{3}=2 x^{2}$, which is not equivalent to the original equation (i.e. it has a different solution set). No symmetry about the x-axis.

Substituting $-x$ for x and $-y$ for y yields $-y^{3}=2 x^{2}$, again not equivalent to the original equation. No symmetry about the origin.

12 Call the function f, so that $f(x)=\sqrt{x+5}-3$.

