MATH 125 EXAM #1 KEY (SPRING 2011)

1.
$$D = \sqrt{(12-2)^2 + (3-(-5))^2} = \sqrt{164} = 2\sqrt{41}$$
.

- **2.** For y-intercept: set x=0 and solve for y to get y=9; so (0,9) is the y-intercept. For x-intercept(s): set y=0 to get $9x^2=36 \implies x=\pm 2$; so $(\pm 2,0)$ are the x-intercepts.
- 3. $4(x-4) 5 \cdot 4(x+1) = 21(x+1)(x-4) \implies 21x^2 47x 48 = 0 \implies x = \frac{47 \pm \sqrt{47^2 4(21)(-48)}}{42} = \frac{47 \pm 79}{42} \in \left\{3, -\frac{16}{21}\right\}.$
- 4. Slope of line is $m = \frac{-8 (-5)}{-6 2} = \frac{3}{8}$. Now use the point-slope formula to get $y + 5 = \frac{3}{8}(x 2)$, which leads to $y = \frac{3}{8}x \frac{23}{4}$.
- **5.** Complete squares: $(x^2 x) + (y^2 + 2y) = -1 \implies \left(x^2 x + \left(-\frac{1}{2}\right)^2\right) + \left(y^2 + 2y + 1^2\right) = -1 + \left(-\frac{1}{2}\right)^2 + 1^2 \implies \left(x \frac{1}{2}\right)^2 + (y + 1)^2 = \frac{1}{4}$. From this it can be seen that center of the circle is at $\left(\frac{1}{2}, -1\right)$ and radius is $\frac{1}{2}$.

6.
$$f(-1) = -\frac{1}{2}$$
 and $f(c-1) = \frac{c-1}{(c-1)^2 + 1} = \frac{c-1}{c^2 - 2c + 2}$.

7a.
$$Dom(f) = \{x \mid x \neq \pm 6\} = (-\infty, -6) \cup (-6, 6) \cup (6, \infty).$$

7b.
$$Dom(g) = \{x \mid 3x \ge 12\} = \{x \mid x \ge 4\} = [4, \infty).$$

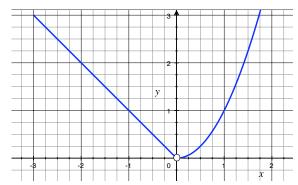
7c.
$$Dom(f+g) = Dom(f) \cap Dom(g) = [4,6) \cup (6,\infty).$$

8a.
$$f(-2) = 2(-2)^2 - (-2) - 1 = 9$$
, and the corresponding point on the graph is $(-2, 9)$.

8b. We have $2x^2 - x - 1 = -1$, whence $2x^2 - x = 0 \implies x(2x - 1) = 0 \implies x = 0, \frac{1}{2}$, and the corresponding points on the graph are (0, -1) and (1/2, -1).

9a.
$$\operatorname{Dom}(f) = [-3,0) \cup (0,\infty)$$
 and $\operatorname{Ran}(f) = (0,\infty)$.

9b. I had better luck getting the graph to appear just as it's supposed to this semester. Progress!



10. Start with $f(x) = \sqrt{x}$. Shift down 4 units gives a new function: g(x) = f(x) - 4. Reflecting g about the x-axis gives a new function: h(x) = -g(x). Shifting right by 7 units gives yet another new function: k(x) = h(x-7). Our result is: k(x) = h(x-7) = -g(x-7) = -[f(x-7)-4], or $y = -(\sqrt{x-7}-4) = -\sqrt{x-7}+4$.

11. In general $A = \pi r^2$. But circumference C is given by $C = 2\pi r$ and we know that C must equal x. Hence $x = 2\pi r$, which yields $r = \frac{x}{2\pi}$. Therefore A as a function of x is given by: $A(x) = \pi \left(\frac{x}{2\pi}\right)^2$, or $A(x) = \frac{x^2}{4\pi}$.

12. $(f \circ g)(4) = f(g(4)) = f(12) = \sqrt{13}$ and $(g \circ f)(2) = g(f(2)) = g(\sqrt{3}) = 3\sqrt{3}$.

13a $(f \circ f)(x) = f(f(x)) = \frac{f(x) - 5}{f(x) + 1} = \frac{\frac{x - 5}{x + 1} - 5}{\frac{x - 5}{x + 1} + 1} = \frac{2x + 5}{2 - x}.$

13b. First, Dom $f = \{x \mid x \neq -1\}$ and Dom $g = \{x \mid x \neq 3\}$. Now, by definition, Dom $g \circ f = \{x \mid x \in \text{Dom } f \text{ and } f(x) \in \text{Dom } g\} = \left\{x \mid x \neq -1 \text{ and } \frac{x-5}{x+1} \neq 3\right\} = \{x \mid x \neq -1 \text{ and } x \neq -4\}.$

13c. By definition, Dom $f \circ g = \{x \mid x \in \text{Dom } g \text{ and } g(x) \in \text{Dom } f\} = \left\{x \mid x \neq 3 \text{ and } \frac{x+2}{x-3} \neq -1\right\} = \{x \mid x \neq 3 \text{ and } x \neq 1/2\}.$

2