Math 125 Exam \#2 Key (Fall 2022)

1 Each cable forms a parabola with vertex at $(0,0)$ (the point where the cable touches the road) and points $(\pm 200,75)$ (the tops of the towers). With $h=k=0$ in the vertex form, the quadratic function is $f(x)=a x^{2}$. Now, $a(200)^{2}=f(200)=75$ (the height of a tower), so that $a=0.001875$ and we have $f(x)=0.001875 x^{2}$. The height of either cable 100 m from the center is $f(\pm 100)=0.001875(\pm 100)^{2}=18.75 \mathrm{~m}$.

2 Solve $f(x)=0$, or $-2 x^{2}+8 x+1=0$. With the quadratic forumula we obtain $x=2 \pm \frac{3 \sqrt{2}}{2}$.

3 Write $|x / 2|=2$, so $x / 2= \pm 2$ and finally $x= \pm 4$.

4 From $|1-4 x|>6$ we have $1-4 x<-6$ or $1-4 x>6$, and so $x>\frac{7}{4}$ or $x<-\frac{5}{4}$. Solution set: $\left(-\infty,-\frac{5}{4}\right) \cup\left(\frac{7}{4}, \infty\right)$.

5 We have $f(x)=C x^{2}(x-2)(x+1)^{2}$, with $4=f(1)=C(-1)(2)^{2}$ implying that $C=-1$. Thus the polynomial function is $f(x)=-x^{2}(x-2)(x+1)^{2}$.

6 To have real coefficients the Conjugate Zeros Theorem implies that $2-i$ must also be a zero, and so we need

$$
\begin{aligned}
f(x) & =(x+4)[x-(2+i)][x-(2-i)] \\
& =(x+4)\left(x^{2}-4 x+5\right) \\
& =x^{3}-11 x+20 .
\end{aligned}
$$

7 Let $f(x)=x^{4}+6 x^{3}+7 x^{2}-6 x-8$, so the problem is to find all x such that $f(x)=0$. Among the possible rational zeros is 1 , which turns out to work:

Now we do the same for $g(x)=x^{3}+7 x^{2}+14 x+8$, which has -1 as a zero:

$$
\begin{array}{l|rr|r}
-1 \\
& 1 & 7 & 14 \\
& -1 & -6 & -8 \\
& -1
\end{array} \longrightarrow g(x)=(x+1)\left(x^{2}+6 x+8\right)=(x+1)(x+2)(x+4)
$$

Hence $f(x)=(x-1)(x+1)(x+2)(x+4)$ is the full factorization, and the equation's solution set is $\{1,-1,-2,-4\}$.

8 The vertical asymptotes are $x= \pm 2$, and with the division

$$
\left.x^{2}-4\right) \begin{array}{r}
\frac{x+3}{x^{3}+3 x^{2}+4 x} \\
\frac{-x^{3}+4 x}{3 x^{2}+4 x}+12 \\
\frac{-3 x^{2}+12}{4 x+12}
\end{array}
$$

we find $y=x+3$ to be an oblique asymptote.

9a Rewrite as $(x-2)(x+1)<0$. Using the Intermediate Value Theorem we find the solution set to be $(-1,2)$.

9b Rewrite as

$$
\frac{x(3 x+2)}{x+1} \leq 0
$$

The left-hand side has zeros $-\frac{2}{3}$ and 0 , and vertical asymptote $x=-1$. Choose test values in the intervals $(-\infty,-1),\left(-1,-\frac{2}{3}\right),\left(-\frac{2}{3}, 0\right)$, and $(0, \infty)$, and use the Intermediate Value Theorem to find the solution set to be $(-\infty,-1) \cup\left[-\frac{2}{3}, 0\right]$.

10 Find all x such that $x^{3} \leq 8 x^{2}$, which becomes $x^{2}(x-8) \leq 0$. Since $x^{2}>0$ for any $x \neq 0$, the inequality is satisfied if and only if $x \leq 8$. Solution set is $(-\infty, 8]$.

