MATH 125 EXAM #2 Key (Fall 2022)

1 Each cable forms a parabola with vertex at (0,0) (the point where the cable touches the road) and points $(\pm 200, 75)$ (the tops of the towers). With h = k = 0 in the vertex form, the quadratic function is $f(x) = ax^2$. Now, $a(200)^2 = f(200) = 75$ (the height of a tower), so that a = 0.001875 and we have $f(x) = 0.001875x^2$. The height of either cable 100 m from the center is $f(\pm 100) = 0.001875(\pm 100)^2 = 18.75$ m.

2 Solve f(x) = 0, or $-2x^2 + 8x + 1 = 0$. With the quadratic formula we obtain $x = 2 \pm \frac{3\sqrt{2}}{2}$.

3 Write |x/2| = 2, so $x/2 = \pm 2$ and finally $x = \pm 4$.

4 From |1-4x| > 6 we have 1-4x < -6 or 1-4x > 6, and so $x > \frac{7}{4}$ or $x < -\frac{5}{4}$. Solution set: $(-\infty, -\frac{5}{4}) \cup (\frac{7}{4}, \infty)$.

5 We have $f(x) = Cx^2(x-2)(x+1)^2$, with $4 = f(1) = C(-1)(2)^2$ implying that C = -1. Thus the polynomial function is $f(x) = -x^2(x-2)(x+1)^2$.

6 To have real coefficients the Conjugate Zeros Theorem implies that 2 - i must also be a zero, and so we need

$$f(x) = (x+4)[x - (2+i)][x - (2-i)]$$

= (x+4)(x² - 4x + 5)
= x³ - 11x + 20.

7 Let $f(x) = x^4 + 6x^3 + 7x^2 - 6x - 8$, so the problem is to find all x such that f(x) = 0. Among the possible rational zeros is 1, which turns out to work:

Now we do the same for $g(x) = x^3 + 7x^2 + 14x + 8$, which has -1 as a zero:

Hence f(x) = (x-1)(x+1)(x+2)(x+4) is the full factorization, and the equation's solution set is $\{1, -1, -2, -4\}$.

8 The vertical asymptotes are $x = \pm 2$, and with the division

we find y = x + 3 to be an oblique asymptote.

9a Rewrite as (x-2)(x+1) < 0. Using the Intermediate Value Theorem we find the solution set to be (-1, 2).

9b Rewrite as

$$\frac{x(3x+2)}{x+1} \le 0$$

The left-hand side has zeros $-\frac{2}{3}$ and 0, and vertical asymptote x = -1. Choose test values in the intervals $(-\infty, -1), (-1, -\frac{2}{3}), (-\frac{2}{3}, 0)$, and $(0, \infty)$, and use the Intermediate Value Theorem to find the solution set to be $(-\infty, -1) \cup [-\frac{2}{3}, 0]$.

10 Find all x such that $x^3 \le 8x^2$, which becomes $x^2(x-8) \le 0$. Since $x^2 > 0$ for any $x \ne 0$, the inequality is satisfied if and only if $x \le 8$. Solution set is $(-\infty, 8]$.