Math 125 Exam \#1 Key (Fall 2022)

$1 f(-3)=\sqrt{6}$ and $f(x+1)=\sqrt{(x+1)^{2}+(x+1)}$.

2a $D_{\kappa}=\{x \mid 1-x<0\}=\{x \mid x>1\}=(1, \infty)$.
$\mathbf{2 b} \quad D_{V}=\{r \mid r \geq 0, r \neq 8\}=[0,8) \cup(8, \infty)$.
3 First,

$$
(g / f)(x)=\frac{-\frac{\sqrt{2 x}}{x-6}}{\frac{1}{x-3}}=\frac{(3-x) \sqrt{2 x}}{x-6}
$$

Now, $D_{f}=\{x \mid x \neq 3\}, D_{g}=[0,6) \cup(6, \infty)$, and $f(x)$ is never 0 . With these facts we find

$$
D_{g / f}=\left\{x \mid x \in D_{f} \cap D_{g} \& f(x) \neq 0\right\}=[0,3) \cup(3,6) \cup(6, \infty)
$$

$4-1=f(2)=\frac{7}{C-4}$, and so $C=-3$.
$5 D_{f}=[-5,5)$ and $R_{f}=[-4,5]$. Definition follows:

$$
f(x)=\left\{\begin{array}{rlrl}
3 x+11, & -5 & \leq x<-2 \\
5, & & -2 \leq x<0 \\
& \frac{1}{5} x-3, & & 0 \leq x<5
\end{array}\right.
$$

$6 y=x^{2} \xrightarrow{(1)} y=(-x)^{2} \xrightarrow{(2)} y=[-(x-3)]^{2} \xrightarrow{(3)} f(x)=[-(x-3)]^{2}-12$.
$7 A(x)=x\left(10-x^{2}\right)$, and since the x-intercept of the parabola in Quadrant I is $\sqrt{10}$, the domain of A must be $(0, \sqrt{10})$. See figure below.

8 Solving $2 x^{2}-3 x-1=0$, we get $x^{2}-\frac{3}{2} x+\left(\frac{3}{4}\right)^{2}=\frac{1}{2}+\left(\frac{3}{4}\right)^{2}$, or $\left(x-\frac{3}{4}\right)^{2}=\frac{17}{16}$, which upon taking the square root yields

$$
x=\frac{3 \pm \sqrt{17}}{4} .
$$

These are the zeros of p.
9 From $u(x)=0$ factorization gives $\left(x^{2}-4\right)\left(x^{2}-6\right)=0$, and so the zeros of u are $\pm 2, \pm \sqrt{6}$.

10 The vertex is at $\left(\frac{1}{2}, \frac{3}{2}\right)$, with axis of symmetry $x=\frac{1}{2}$, domain $D_{f}=(-\infty, \infty)$, and range $R_{f}=\left(-\infty, \frac{3}{2}\right]$.

