Math 125 Exam \#4 Key (Fall 2021)

$1 \csc \theta>0$ and $\cot \theta<0$ implies θ is in Quadrant II, with $r=3, y=1$, and $x=-2 \sqrt{2}$. Thus $\sin \theta=\frac{1}{3}, \cos \theta=-\frac{2 \sqrt{2}}{3}, \tan \theta=-\frac{1}{2 \sqrt{2}}, \cot \theta=-2 \sqrt{2}, \sec \theta=-\frac{3}{2 \sqrt{2}}$.

2 Since tan is an odd function, $f(-a)=-f(a)=-6$. Also tan has period π, so $f(a+\pi)+$ $f(a-3 \pi)=f(a)+f(a)=12$.

3a $\begin{array}{lllllll}\frac{3 \pi}{10} & \mathbf{3 b} & \frac{\pi}{7} & \mathbf{3 c} \sqrt{5} & \text { 3d } & \text { Undefined: } \sin \frac{7 \pi}{6} \text { is not in domain of } \sec ^{-1} .\end{array}$
$4 f^{-1}(x)=\frac{1}{3} \cos ^{-1}(-x / 2)$, with $D_{f^{-1}}=R_{f}=[-2,2]$ and $R_{f^{-1}}=D_{f}=\left[0, \frac{\pi}{3}\right]$.

5a We have $\cos \theta= \pm \frac{1}{\sqrt{2}}$, and so $\theta=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$.

5b So $\tan \theta=-1$, giving $\theta=\frac{3 \pi}{4}, \frac{7 \pi}{4}$.

5c Write $4+4 \sin \theta=1-\sin ^{2} \theta$, so $(\sin \theta+3)(\sin \theta+1)=0$, which implies $\sin \theta=-1$, or $\theta=\frac{3 \pi}{2}$.

6a We have

$$
1-\frac{\sin ^{2} \theta}{1-\cos \theta}=1-\frac{1-\cos ^{2} \theta}{1-\cos \theta}=1-\frac{(1-\cos \theta)(1+\cos \theta)}{1-\cos \theta}=1-(1+\cos \theta)=-\cos \theta
$$

6b We have

$$
\sin \theta \tan \theta=\frac{\sin ^{2} \theta}{\cos \theta}=\frac{1-\cos ^{2} \theta}{\cos \theta}=\frac{1}{\cos \theta}-\frac{\cos ^{2} \theta}{\cos \theta}=\sec \theta-\cos \theta
$$

7 With a half-angle identity,

$$
\tan 15^{\circ}=\frac{\sin 30^{\circ}}{1+\cos 30^{\circ}}=\frac{1 / 2}{1+\sqrt{3} / 2}=2-\sqrt{3}
$$

8 This sets up a right triangle with legs of length 16 and 3 , and so if the angle of depression is θ, we have

$$
\tan \theta=-\frac{3}{16} \Rightarrow \theta=\tan ^{-1}(-0.1875)=-10.6^{\circ}
$$

9 Let h be the height of the monument. Then

$$
\tan 35.1^{\circ}=\frac{h}{789} \Rightarrow h=789 \tan 35.1^{\circ} \approx 554.5 \mathrm{ft}
$$

10a $B=110^{\circ}$ is immediate, and with the Law of Sines we find that $b=3.68$ and $c=1.34$.

10b Use the Law of Sines to get $\sin A=2 \sin 100^{\circ} \approx 1.97$, which is impossible, and so no triangle results.

11 This is the ambiguous case of the Law of Sines. The two possible distances to Venus are $164,200,000 \mathrm{~km}$ and $65,000,000 \mathrm{~km}$.

