1 Let the rectangle be ℓ long and w wide. Perimeter is $2 \ell+2 w=80$, so $w=40-\ell$. Area as a function of ℓ is then $A(\ell)=\ell(40-\ell)=-\ell^{2}+40 \ell$. This is a quadratic function that opens downward, so the vertex is the highest point (representing maximum area). The vertex is at ℓ value $-\frac{b}{2 a}=20$, in which case $w=40-20=20$ also. We conclude that the rectangle with maximum area must be $20 \mathrm{~m} \times 20 \mathrm{~m}$, which has area $400 \mathrm{~m}^{2}$.

2 Solve $f(x)=0$, or $3 x^{2}+6 x+4=0$. With the quadratic forumula we obtain $x=-1 \pm \frac{\sqrt{3}}{3} i$.
3 Remove absolute value bars to get $x^{2}+3 x= \pm 5$, or $x^{2}+3 x \pm 5=0$. Using the quadratic formula to solve each equation gives

$$
x=-\frac{3}{2} \pm \frac{\sqrt{29}}{2},-\frac{3}{2} \pm \frac{\sqrt{11}}{2} i .
$$

Only the real solutions are required, but the complex-valued solutions are also valid.

4 We must have $x+6 \geq 7$ or $x+6 \leq-7$, giving $x \geq 1$ or $x \leq-13$. Solution set is $(-\infty,-13] \cup[1, \infty)$.

5 Must have $f(x)=C(x-3)^{2}(x+4)(x-1)^{3}$ with C such that $f(-1)=20$. This requires $C=-\frac{5}{96}$, and so we finally get

$$
f(x)=-\frac{5}{96}(x-3)^{2}(x+4)(x-1)^{3}
$$

6 To have real coefficients the Conjugate Zeros Theorem implies that $1+2 i$ must also be a zero, and so we need

$$
\begin{aligned}
f(x) & =(x-6)[x-(1-2 i)][x-(1+2 i)] \\
& =(x-6)\left(x^{2}-2 x+5\right) \\
& =x^{3}-8 x^{2}+17 x-30 .
\end{aligned}
$$

7 The rational zeros that G could possibly have include such values as 1 and -5 , which are in fact zeros for G. We use synthetic division to start factoring $G(x)$:

$$
\begin{aligned}
& \begin{array}{l}
1 \\
\\
\begin{array}{rrrr|r}
2 & 11 & -5 & -43 & 35 \\
& 2 & 13 & 8 & -35 \\
\hline 2 & 13 & 8 & -35 & 0
\end{array} \longrightarrow f(x)=(x-1)\left(2 x^{3}+13 x^{2}+8 x-35\right)
\end{array} \\
& \left.\begin{array}{rrr|r}
-5 & \begin{array}{rrr}
2 & 13 & 8 \\
& -35 \\
& -10 & -15 \\
\hline
\end{array} & 35 \\
\hline 2 & 3 & -7 & 0
\end{array}\right] f(x)=(x-1)(x+5)\left(2 x^{2}+3 x-7\right)
\end{aligned}
$$

Solving $2 x^{2}+3 x-7=0$ using the quadratic formula, we obtain the complete list of real zeros: $-5,1, \frac{-3 \pm \sqrt{65}}{4}$.

The complete factorization is

$$
G(x)=(x-1)(x+5)\left(x+\frac{3+\sqrt{65}}{4}\right)\left(x+\frac{3-\sqrt{65}}{4}\right) .
$$

8 Let $f(x)=x^{3}-8 x^{2}+25 x-26$, so the problem is to find all x such that $f(x)=0$. Among the possible rational zeros is 2 , which turns out to work:

$$
\begin{array}{ccc|ccc}
2 & 1 & -8 & 25 & -26 & \longrightarrow
\end{array}
$$

Applying ye olde quadratic formula to $x^{2}-6 x+13=0$ yields the zeros $3 \pm 2 i$. In conclusion, f has zeros $2,3-2 i, 3+2 i$, which are therefore the solutions to the given equation.
$9-3 i$ must be another zero, and so $(x-3 i)(x+3 i)=x^{2}+9$ is a factor of $H(x)$. Then

$$
\begin{aligned}
& \left.x^{2}+9\right) \begin{array}{r}
3 x^{2}+5 x-2 \\
\begin{array}{c}
3 x^{4}+5 x^{3}+25 x^{2}+45 x-18 \\
-3 x^{4}-27 x^{2}
\end{array} \\
\hline 5 x^{3}-2 x^{2}+45 x
\end{array} \\
& -5 x^{3} \quad-45 x \\
& -2 x^{2} \quad-18 \\
& 2 x^{2}+18
\end{aligned}
$$

shows $3 x^{2}+5 x-2$ is another factor. Now,

$$
H(x)=0 \Rightarrow\left(x^{2}+9\right)\left(3 x^{2}+5 x-2\right)=0 \Rightarrow(x-3 i)(x+3 i)(3 x-1)(x+2)=0
$$

and therefore other zeros of H are $\frac{1}{3}$ and -2 .
$10 K(x)=\frac{x\left(x^{2}+1\right)}{(x-3)(x-2)}$ shows the fraction is reduced, so there are vertical asymptotes $x=3, x=2$. Long division also shows $y=x+5$ is an oblique asymptote:

$$
\left.x^{2}-5 x+6\right) \begin{array}{r}
x+5 \\
\begin{array}{r}
x^{3}+x \\
-x^{3}+5 x^{2}-6 x \\
5 x^{2}-5 x \\
\frac{-5 x^{2}+25 x-30}{20 x-30}
\end{array}
\end{array}
$$

11a Write $x^{4}-16>0$, then factor to get $(x-2)(x+2)\left(x^{2}+4\right)>0$. Since $x^{2}+4>0$ for any x, we divide it out to get $(x-2)(x+2)>0$, and then use the Intermediate Value Theorem to determine the solution set to be $(-\infty,-2) \cup(2, \infty)$.

11b Employ the Intermediate Value Theorem method as in class, or consider the following approach. Factoring, the inequality $x^{3}-2 x^{2}-3 x<0$ becomes $x(x-3)(x+1)<0$. Now we run through cases.

Case I: $x<0, x-3<0, x+1<0$, giving $x<-1$. Case II: $x<0, x-3>0, x+1>0$, giving a contradiction. Case III: $x>0, x-3<0, x+1>0$, giving $0<x<3$. Case IV: $x>0$, $x-3>0, x+1<0$, giving a contradiction. Solution set: $(-\infty,-1) \cup(0,3)$.

11c Get 0 on the right-hand side:

$$
\frac{3 x-5}{x+2}-2 \geq 0 \Rightarrow \frac{3 x-5}{x+2}-\frac{2(x+2)}{x+2} \geq 0 \Rightarrow \frac{x-9}{x+2} \geq 0
$$

Case I: $x-9 \geq 0 \& x+2>0$, giving $x \geq 9$. Case II: $x-9 \leq 0 \& x+2<0$, giving $x<-2$. Solution set: $(-\infty,-2) \cup[9, \infty)$.

